Share Email Print
cover

Proceedings Paper

Infrared thermography as a diagnostic tool to indicate sick-house-syndrome: a case-study
Author(s): Sven-Ake Ljungberg
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Every third child and many adults in Sweden have allergic reactions caused by indoor environmental problems. A lot of buildings constructed during the building-boom period of 1950 - 1990 expose the sick-house-syndrome, due to built-in moisture problems and poor ventilation performance of the building. Leaky building construction, transport of humid air condensing on thermal bridges within the construction gives rise to a humid environment, and forms a base for a microbial deterioration process of organic materials, with emissions hazardous for human health. So far there are no universal and cost efficient techniques or methods developed which could be used to reveal the sick-house-syndrome. In this paper we present the results of a case-study of the sick-house-syndrome, and an investigation concept with a combination of different techniques and methods to detect and to map underlying factors that form the base for microbial activities. The concept includes mobile and indoor thermography, functional control of ventilation systems, tracer gas techniques for measurement of air flow exchange rate in different rooms, microbial investigation of emissions, field inspections within the building construction and the building envelope, and medical investigation of the health status of the people working in the building. Mobile thermography of the exterior facades has been performed with a longwave AGEMA THV 900, respectively THV 1000 infrared system, during the period December 1994 - June 1995, at different and similar weather and radiation conditions, and with the building pressurized at one accession. Indoor thermography has been performed with a shortwave AGEMA THV 470 system, for a selection of objects/surfaces with thermal deviations, indicated in thermograms from the different mobile thermographic surveys. Functional control was performed for the ventilation systems, and air flow rates were measured using tracer gas technique for a selection of rooms with different function, manload and demand of air flow. Field control inspections were performed partly from the inside and partly from the outside of the building. Microbial activities were investigated by traditional measurements of the emissions and contamination of indoor air, and by ocular inspections and laboratory tests of building materials. Despite the fact that the building studied has a complicated composition of surface materials, including glass, wood, steel and concrete panels, it was possible to indirectly indicate surface anomalies, related to microbial deterioration of organic materials, through mold and rot activities, due to in-exfiltration of humid air, causing moisture problems within the construction. The result from this case-study shows that thermography can become an important diagnostic tool in order to detect and map sick-house-syndromes. The project is to be continued.

Paper Details

Date Published: 15 March 1996
PDF: 18 pages
Proc. SPIE 2766, Thermosense XVIII: An International Conference on Thermal Sensing and Imaging Diagnostic Applications, (15 March 1996); doi: 10.1117/12.235365
Show Author Affiliations
Sven-Ake Ljungberg, Royal Institute of Technology (Sweden)


Published in SPIE Proceedings Vol. 2766:
Thermosense XVIII: An International Conference on Thermal Sensing and Imaging Diagnostic Applications
Douglas D. Burleigh; Jane W. Maclachlan Spicer, Editor(s)

© SPIE. Terms of Use
Back to Top