Share Email Print
cover

Proceedings Paper

Planar gradient-index cylindrical microlenses: flexible components for laser diode applications
Author(s): Rolf Goering; Torsten Possner; Peter Schreiber
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Using the silver-sodium ion exchange process in a special optical glass, different types of gradient-index cylindrical microlenses and microlens arrays have been fabricated. High numerical aperture single cylindrical lenses are produced in thin glass slabs without any diffusion masks. Depending on the desired index profile accuracy, a two- or three-step ion exchange process is used, the maximum numerical aperture which can be achieved is about 0.6. Contrary to other lens fabrication techniques, lenses of different focal length can be produced very easily, and both focussing and diverging lenses are possible. A series of systems, combining different lenses, have been realized for anamorphotic single-mode laser diode beam transformation and high-brightness laser diode beam forming. Arrays of cylindrical lenses of moderate numerical aperture (about 0.2) have been realized by electrical field assisted ion exchange through 1D mask structures. These lens arrays have been successfully applied to multiple-stripe pulsed laser diodes for efficient reduction of the output beam divergency, thus enabling a more efficient coupling of the output power to multimode fibers.

Paper Details

Date Published: 8 March 1996
PDF: 9 pages
Proc. SPIE 2687, Miniaturized Systems with Micro-Optics and Micromechanics, (8 March 1996); doi: 10.1117/12.234626
Show Author Affiliations
Rolf Goering, Fraunhofer Institute for Applied Optics and Precision Engineering (Germany)
Torsten Possner, Fraunhofer Institute for Applied Optics and Precision Engineering (Germany)
Peter Schreiber, Fraunhofer Institute for Applied Optics and Precision Engineering (Germany)


Published in SPIE Proceedings Vol. 2687:
Miniaturized Systems with Micro-Optics and Micromechanics
M. Edward Motamedi, Editor(s)

© SPIE. Terms of Use
Back to Top