Share Email Print
cover

Proceedings Paper

Layered transmission of audio/video signals
Author(s): Masoud Sajadieh; F. R. Kschischang; Alberto Leon-Garcia
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In a broadcast channel, a single transmitter communicates with a number of receivers having different channel capacities available to them. A typical example of such a channel is the over the air TV broadcast. For the two-receiver case, we examine the performance of some common orthogonal transmission methods in terms of their achievable rates. Layered transmission, whereby the information intended for the better channel is superimposed on the portion of information common to both receivers, can provide an optimal solution. On this premise, we construct a bi-rate transmission model for a Gaussian broadcast channel, in which receivers are distributed according to an exponential pdf. A basic grade of service is thus maintained throughout the entire coverage area in addition to a higher quality video offered to the receivers with better reception conditions. The performance evaluation indicates that this model offers a higher per capita data rate comparing to the conventional single rate transmission systems. The multirate paradigm exhibits a stepwise degradation, mitigating the sharp cutoff threshold of the current digital broadcast systems. Application of this multirate broadcast proves very promising in the area of multiresolution transmission of digital HDTV.

Paper Details

Date Published: 27 February 1996
PDF: 12 pages
Proc. SPIE 2727, Visual Communications and Image Processing '96, (27 February 1996); doi: 10.1117/12.233207
Show Author Affiliations
Masoud Sajadieh, Univ. of Toronto (Canada)
F. R. Kschischang, Univ. of Toronto (Canada)
Alberto Leon-Garcia, Univ. of Toronto (Canada)


Published in SPIE Proceedings Vol. 2727:
Visual Communications and Image Processing '96
Rashid Ansari; Mark J. T. Smith, Editor(s)

© SPIE. Terms of Use
Back to Top