Share Email Print
cover

Proceedings Paper

In-band low-power laser dazzle and pixel damage of an uncooled LWIR thermal imager
Author(s): G. D. Lewis; S. Chretien; C. N. Santos; M. Vandewal; B. Hackens
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Infrared imaging sensors are a vital component of modern military weapons and surveillance systems, which for land operations is dominated by uncooled thermal imagers using microbolometer array detectors. These sensors, just as for all electro-optical and infrared devices, are vulnerable to the ever-increasing threat of in-band laser weapons, which can perturb or destroy their operational effectiveness. Importantly, this can happen even for relatively low laser output power. In this article, we analyze the experimentally measured results of laser dazzle and subsequent damage on an uncooled long-wave thermal imager. The imager has a vanadium oxide microbolometer array of size 640x480 pixels. A tunable quantum cascade laser is used with power output less than 100mW and fixed at a wavelength of 10.6 micron. The laser power was increased in incremental steps with the imager positioned only a few meters away. We discovered that the pixels covered by the laser spot saturate, leading to damage from accumulated exposures of only a few seconds. Additionally, we recorded circular diffraction effects and blooming of the array. In summary, we observed that damage was inflicted to pixels on the microbolometer array well before any significant dazzling was achieved.

Paper Details

Date Published: 9 October 2018
PDF: 11 pages
Proc. SPIE 10797, Technologies for Optical Countermeasures XV, 107970F (9 October 2018); doi: 10.1117/12.2325261
Show Author Affiliations
G. D. Lewis, Royal Military Academy (Belgium)
S. Chretien, Royal Military Academy (Belgium)
C. N. Santos, Royal Military Academy (Belgium)
M. Vandewal, Royal Military Academy (Belgium)
B. Hackens, Univ. Catholique de Louvain (Belgium)


Published in SPIE Proceedings Vol. 10797:
Technologies for Optical Countermeasures XV
David H. Titterton; Robert J. Grasso; Mark A. Richardson, Editor(s)

© SPIE. Terms of Use
Back to Top