Share Email Print

Proceedings Paper • new

High efficiency OLEDs based on exciplex (Conference Presentation)
Author(s): Ken-Tsung Wong
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Organic materials that display thermally activated delayed fluorescence (TADF) are a striking class of functional materials that have witnessed a booming progress in recent years. The small ΔEST in TADF-based systems prompts highly efficient RISC from T1 to S1 states, and consequently both singlet and triplet excitons can be harvested for light emission. For the last five years, a tremendous amount of TADF molecules have been reported based on the manipulation of the intramolecular charge transfer as well as the HOMO-LUMO overlap. Beyond this strategy, there is an emerging approach that simply involves intermolecular charge transfer between physically blended electron donor and acceptor molecules for high efficiency TADF-based OLEDs (via exciplex formation). This is because the exciplex-based systems can realize relatively small ΔEST (0–0.05 eV) much more easily since the electron and hole are positioned on two different molecules, thereby giving small exchange energy. Consequently, exciplex-based OLEDs have the possibility to maximize the TADF contribution and achieve theoretical 100% internal quantum efficiency and solve the challenging issue of achieving small ΔEST in organic systems. However, research on exciplex-forming materials is still at a growing stage, and consequently, new molecules with remarkable electro and or photo-physical property are still being explored. Thus, by focusing on the development of exciplex systems, we shall have the prospective of achieving the demands for high-efficiency and high stability OLED devices. In this conference, we will report our updated results of new efficient exciplex systems, and exciplex-hosted fluorescent and phosphorescent OLEDs with high efficiency and high stability.

Paper Details

Date Published: 18 September 2018
Proc. SPIE 10736, Organic Light Emitting Materials and Devices XXII, 1073609 (18 September 2018); doi: 10.1117/12.2323782
Show Author Affiliations
Ken-Tsung Wong, National Taiwan Univ. (Taiwan)

Published in SPIE Proceedings Vol. 10736:
Organic Light Emitting Materials and Devices XXII
Chihaya Adachi; Jang-Joo Kim; Franky So, Editor(s)

© SPIE. Terms of Use
Back to Top