Share Email Print

Proceedings Paper • new

Thermal-hydraulic performance modelling of a sine-shaped wavy channel for electronics cooling applications
Author(s): Viorel Ionescu; Anisoara-Arleziana Neagu
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The optimum design of corrugated wavy channels used in mini-channel/micro-channel heat sink applications for minimum pumping power (i.e., minimum pressure drop) and efficient heat transfer is a great challenge in terms of energy savings point of view. In this paper, a commercial solver based on the Finite Element Method (FEM) was used for developing a two dimensional numerical model for a sine-shaped corrugated channel. The effect of channel geometry(spacing ratio ε and waviness parameter γ) on the friction coefficient f, average Nusselt number Nuav, pumping power P.P. and goodness factor G has been carried out for various numerical models at different Reynolds numbers between 100 and 1339. The Nuav parameter clearly increased at Re < 500 with the increasing of γ from 0.024 to 0.21, but with the expense of a higher friction factor.

Paper Details

Date Published: 31 December 2018
PDF: 8 pages
Proc. SPIE 10977, Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies IX, 109772D (31 December 2018); doi: 10.1117/12.2323339
Show Author Affiliations
Viorel Ionescu, Ovidius Univ. of Constanta (Romania)
Maritime Univ. of Constanta (Romania)
Anisoara-Arleziana Neagu, Ovidius Univ. of Constanta (Romania)

Published in SPIE Proceedings Vol. 10977:
Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies IX
Marian Vladescu; Razvan D. Tamas; Ionica Cristea, Editor(s)

© SPIE. Terms of Use
Back to Top