Share Email Print
cover

Proceedings Paper • new

Resonance Raman imagery of semi-fossilized soft tissues
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The discovery of soft structures in dinosaur bone with the morphological and molecular characteristics of blood vessels in extant vertebrates was both surprising and controversial. Mounting evidence suggests that these soft tissues are blood vessels, their preservation driven in part by reactive oxygen species derived from hemoglobin degradation. More data are needed to support this hypothesis. Raman spectroscopy, and resonance Raman in particular, can provide detailed information as to the chemical makeup of these samples. We used two different excitation wavelengths in microscale Raman measurements to look for lines characteristic of degraded heme molecules, both in ancient vessels and modern analogues taken from semi-fossilized, hemoglobin-soaked ostrich bones. In both samples, we observed two regimes: dark colored, stiff regions and more transparent, elastic regions. We discovered that the two apparent regimes in the samples had different strengths of Raman returns, and that resonance effects greatly affected the Raman intensity. In all cases, there was some evidence of degraded heme spectra, though the increased returns indicated that the dark regimes had reacted more strongly with the heme specie. The modern vessels displayed a resonance Raman intensity consistent with hemoglobin molecular structures, which indicated resonance spectra would provide understanding of the ancient heme molecule. To investigate the two regimes more thoroughly, we acquired Raman spectra over areas where the sample transitioned from one regime to another. Variable wavelength resonance Raman measurements over the whole sample were used to give more information about the heme species present, in both ancient and modern samples.

Paper Details

Date Published: 3 September 2018
PDF: 6 pages
Proc. SPIE 10753, Ultrafast Nonlinear Imaging and Spectroscopy VI, 1075310 (3 September 2018); doi: 10.1117/12.2321298
Show Author Affiliations
Brandon Long, North Carolina State Univ. (United States)
Wenxia Zheng, North Carolina State Univ. (United States)
Mary Schweitzer, North Carolina State Univ. (United States)
Hans Hallen, North Carolina State Univ. (United States)


Published in SPIE Proceedings Vol. 10753:
Ultrafast Nonlinear Imaging and Spectroscopy VI
Zhiwen Liu; Demetri Psaltis; Kebin Shi, Editor(s)

© SPIE. Terms of Use
Back to Top