Share Email Print

Proceedings Paper • new

Ultrafast dynamics of the ultraviolet and visible photoluminescence in the aluminum-doped zinc oxide metamaterial
Author(s): Bethany Campbell ; Priscilla Kelly; Lyuba Kuznetsova
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The emission properties of aluminum-doped zinc oxide are numerically investigated. A complete model for photoluminescence, based on the set of rate equations for electron-hole recombination, is used to study the influence of carrier concentration (1017-1020 cm-3 ) on the visible and ultraviolet (UV) emission. The set of coupled rate equations is solved numerically using the fourth order Runge-Kutta technique for various optical pump intensities and pulse durations. The results for low carrier concentration (~1017 cm-3 ) show that at low pump intensity (0.01 mJ/cm2 ) visible emission is dominant in the emission spectrum and, as the pump intensity increases (~1 mJ/cm2 ), the UV emission becomes dominant. The study of ultrafast dynamics shows that for pump pulse durations of less than ~ 1 ns the intensity of the UV emission is an order of magnitude larger compared to the visible intensity for aluminum-doped ZnO samples with carrier concentration ~1018 cm-3 .

Paper Details

Date Published: 19 September 2018
PDF: 6 pages
Proc. SPIE 10720, Nanophotonic Materials XV, 1072008 (19 September 2018); doi: 10.1117/12.2320889
Show Author Affiliations
Bethany Campbell , San Diego State Univ. (United States)
Priscilla Kelly, San Diego State Univ. (United States)
Lyuba Kuznetsova, San Diego State Univ. (United States)

Published in SPIE Proceedings Vol. 10720:
Nanophotonic Materials XV
Stefano Cabrini; Gilles Lérondel; Adam M. Schwartzberg; Taleb Mokari, Editor(s)

© SPIE. Terms of Use
Back to Top