Share Email Print
cover

Proceedings Paper • new

Optical vortex application for a secure optical system
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In the paper a concept of an optical vortex application for the secure optical system was presented. The proposed system uses a spatial multiplexing of optical signals performed by creating two separate communication channels in one optical fiber in which the important data can be encrypted. The optical secure system consists of three parts, i.e.: light beam generator, optical fiber link and demodulation unit. Light from a single source is split into two types of light beams. One of them remains unchanged and preserves its Gaussian shape. The other one is transformed to an optical vortex by passing through the liquid crystal spiral phase plate. This liquid crystal cell requires spatially distributed electrodes which can be supplied independently to introduce spatially distributed phase shifts what changes this Gaussian beam into optical vortex. It was applied as a perdeuterated liquid crystal D5CB which has a small absorption in telecommunications’ spectral region. Both beams are coupled together to the specially designed photonic crystal fiber which supports propagation of fundamental and vortex modes launched to it. The cross section of the optical fiber has a honey comb lattice with two types of air-holes rings. External one with four rings confines all propagating modes and internal single ring which spatially separates the fundamental mode and the first group of higher order modes. Both types of spatially separated modes can be used for transmitting important data. The fiber link output requires a second spatial demodulator to decouple both modes and decrypt transmitted data. At this stage of the project a light beam generator is developed, fiber link and demodulation unit are under testing.

Paper Details

Date Published: 7 September 2018
PDF: 6 pages
Proc. SPIE 10834, Speckle 2018: VII International Conference on Speckle Metrology, 108341T (7 September 2018); doi: 10.1117/12.2319586
Show Author Affiliations
P. Marć, Military Univ. of Technology (Poland)
M. Życzkowski, Military Univ. of Technology (Poland)
N. Bennis, Military Univ. of Technology (Poland)
L. R. Jaroszewicz, Military Univ. of Technology (Poland)


Published in SPIE Proceedings Vol. 10834:
Speckle 2018: VII International Conference on Speckle Metrology
Malgorzata Kujawińska; Leszek R. Jaroszewicz, Editor(s)

© SPIE. Terms of Use
Back to Top