Share Email Print
cover

Proceedings Paper

Broadband anti-reflective coatings for cosmic microwave background experiments
Author(s): A. Nadolski; A. M. Kofman; J. D. Vieira; P. A. R. Ade; Z. Ahmed; A. J. Anderson; J. S. Avva; R. Basu Thakur; A. N. Bender; B. A. Benson; J. E. Carlstrom; F. W. Carter; T. W. Cecil; C. L. Chang; J. F. Cliche; A. Cukierman; T. de Haan; J. Ding; M. A. Dobbs; D. Dutcher; W. Everett; A. Foster; J. Fu; J. Gallichio; A. Gilbert; J. C. Groh; S. T. Guns; R. Guyser; N. W. Halverson; A. H. Harke-Hosemann; N. L. Harrington; J. W. Henning; W. L. Holzapfel; N. Huang; K. D. Irwin; O. B. Jeong; M. Jonas; A. Jones; T. S. Khaire; M. Korman; D. L. Kubik; S. Kuhlmann; C.-L. Kuo; A. T. Lee; A. E. Lowitz; S. S. Meyer; D. Michalik; J. Montgomery; T. Natoli; H. Nguyen; G. I. Noble; V. Novosad; S. Padin; Z. Pan; J. Pearson; C. M. Posada; W. Quan; A. Rahlin; J. E. Ruhl; J. T. Sayre; E. Shirokoff; G. Smecher; J. A. Sobrin; A. A. Stark; K. T. Story; A. Suzuki; K. L. Thompson; C. Tucker; K. Vanderlinde; G. Wang; N. Whitehorn; V. Yefremenko; K. W. Yoon; M. R. Young
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The desire for higher sensitivity has driven ground-based cosmic microwave background (CMB) experiments to employ ever larger focal planes, which in turn require larger reimaging optics. Practical limits to the maximum size of these optics motivates the development of quasi-optically-coupled (lenslet-coupled), multi-chroic detectors. These detectors can be sensitive across a broader bandwidth compared to waveguide-coupled detectors. However, the increase in bandwidth comes at a cost: the lenses (up to ~700 mm diameter) and lenslets (~5 mm diameter, hemispherical lenses on the focal plane) used in these systems are made from high-refractive-index materials (such as silicon or amorphous aluminum oxide) that reflect nearly a third of the incident radiation. In order to maximize the faint CMB signal that reaches the detectors, the lenses and lenslets must be coated with an anti-reflective (AR) material. The AR coating must maximize radiation transmission in scientifically interesting bands and be cryogenically stable. Such a coating was developed for the third generation camera, SPT-3G, of the South Pole Telescope (SPT) experiment, but the materials and techniques used in the development are general to AR coatings for mm-wave optics. The three-layer polytetra uoroethylene-based AR coating is broadband, inexpensive, and can be manufactured with simple tools. The coating is field tested; AR coated focal plane elements were deployed in the 2016-2017 austral summer and AR coated reimaging optics were deployed in 2017-2018.

Paper Details

Date Published: 9 July 2018
PDF: 13 pages
Proc. SPIE 10708, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX, 1070843 (9 July 2018); doi: 10.1117/12.2315674
Show Author Affiliations
A. Nadolski, Univ. of Illinois at Urbana-Champaign (United States)
A. M. Kofman, Univ. of Illinois at Urbana-Champaign (United States)
J. D. Vieira, Univ. of Illinois at Urbana-Champaign (United States)
P. A. R. Ade, Cardiff Univ. (United Kingdom)
Z. Ahmed, Stanford Univ. (United States)
SLAC National Accelerator Lab. (United States)
A. J. Anderson, Fermi National Accelerator Lab. (United States)
The Univ. of Chicago (United States)
J. S. Avva, Univ. of California, Berkeley (United States)
R. Basu Thakur, The Univ. of Chicago (United States)
A. N. Bender, Argonne National Lab. (United States)
The Univ. of Chicago (United States)
B. A. Benson, Fermi National Accelerator Lab. (United States)
The Univ. of Chicago (United States)
J. E. Carlstrom, The Univ. of Chicago (United States)
Argonne National Lab. (United States)
F. W. Carter, Argonne National Lab. (United States)
The Univ. of Chicago (United States)
T. W. Cecil, Argonne National Lab. (United States)
C. L. Chang, Argonne National Lab. (United States)
The Univ. of Chicago (United States)
J. F. Cliche, McGill Univ. (Canada)
A. Cukierman, Univ. of California, Berkeley (United States)
T. de Haan, Univ. of California, Berkeley (United States)
J. Ding, Argonne National Lab. (United States)
M. A. Dobbs, McGill Univ. (Canada)
Canadian Institute for Advanced Research (Canada)
D. Dutcher, The Univ. of Chicago (United States)
Argonne National Lab. (United States)
W. Everett, Univ. of Colorado Boulder (United States)
A. Foster, Case Western Reserve Univ. (United States)
J. Fu, Univ. of Illinois at Urbana-Champaign (United States)
J. Gallichio, The Univ. of Chicago (United States)
Harvey Mudd College (United States)
A. Gilbert, McGill Univ. (Canada)
J. C. Groh, Univ. of California, Berkeley (United States)
S. T. Guns, Univ. of California, Berkeley (United States)
R. Guyser, Univ. of Illinois at Urbana-Champaign (United States)
N. W. Halverson, Univ. of Colorado Boulder (United States)
A. H. Harke-Hosemann, Univ. of Illinois at Urbana-Champaign (United States)
Argonne National Lab. (United States)
N. L. Harrington, Univ. of California, Berkeley (United States)
J. W. Henning, The Univ. of Chicago (United States)
W. L. Holzapfel, Univ. of California, Berkeley (United States)
N. Huang, Univ. of California, Berkeley (United States)
K. D. Irwin, Stanford Univ. (United States)
SLAC National Accelerator Lab. (United States)
O. B. Jeong, Univ. of California, Berkeley (United States)
M. Jonas, Fermi National Accelerator Lab. (United States)
A. Jones, The Univ. of Chicago (United States)
T. S. Khaire, Argonne National Lab. (United States)
M. Korman, Case Western Reserve Univ. (United States)
D. L. Kubik, Fermi National Accelerator Lab. (United States)
S. Kuhlmann, Argonne National Lab. (United States)
C.-L. Kuo, Stanford Univ. (United States)
SLAC National Accelerator Lab. (United States)
A. T. Lee, Univ. of California, Berkeley (United States)
Lawrence Berkeley National Lab. (United States)
A. E. Lowitz, The Univ. of Chicago (United States)
S. S. Meyer, The Univ. of Chicago (United States)
D. Michalik, The Univ. of Chicago (United States)
J. Montgomery, McGill Univ. (Canada)
T. Natoli, Univ. of Toronto (Canada)
H. Nguyen, Fermi National Accelerator Lab. (United States)
G. I. Noble, McGill Univ. (Canada)
V. Novosad, Argonne National Lab. (United States)
S. Padin, The Univ. of Chicago (United States)
Z. Pan, The Univ. of Chicago (United States)
J. Pearson, Argonne National Lab. (United States)
C. M. Posada, Argonne National Lab. (United States)
W. Quan, The Univ. of Chicago (United States)
A. Rahlin, Fermi National Accelerator Lab. (United States)
The Univ. of Chicago (United States)
J. E. Ruhl, Case Western Reserve Univ. (United States)
J. T. Sayre, Univ. of Colorado Boulder (United States)
E. Shirokoff, The Univ. of Chicago (United States)
Argonne National Lab. (United States)
G. Smecher, Three-Speed Logic, Inc. (Canada)
J. A. Sobrin, The Univ. of Chicago (United States)
A. A. Stark, Harvard-Smithsonian Ctr. for Astrophysics (United States)
K. T. Story, Stanford Univ. (United States)
A. Suzuki, Lawrence Berkeley National Lab. (United States)
K. L. Thompson, Stanford Univ. (United States)
SLAC National Accelerator Lab. (United States)
C. Tucker, Cardiff Univ. (United Kingdom)
K. Vanderlinde, Univ. of Toronto (Canada)
G. Wang, Argonne National Lab. (United States)
N. Whitehorn, Univ. of California, Los Angeles (United States)
Univ. of California, Berkeley (United States)
V. Yefremenko, Argonne National Lab. (United States)
K. W. Yoon, Stanford Univ. (United States)
SLAC National Accelerator Lab. (United States)
M. R. Young, Univ. of Toronto (Canada)


Published in SPIE Proceedings Vol. 10708:
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX
Jonas Zmuidzinas; Jian-Rong Gao, Editor(s)

© SPIE. Terms of Use
Back to Top