Share Email Print
cover

Proceedings Paper • new

PHAST: plano holographic aspheric stitching technique
Author(s): !!!!!!!!Rebecca !!!!!!!!Wilson Borrelli; Cormic K. Merle; Malcolm N. O'Sullivan
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Telescope design advancements are leading to the need for larger convex secondary elements, making the use of traditional refractive test geometries impractical. In response to requests for larger convex components, Harris has developed the Plano Holographic Aspheric Stitching Technique (PHAST)[1], a novel metrology approach that offers versatility as well as improved performance for large convex components. This approach was conceived initially for the in-process testing of the Large Synoptic Survey Telescope (LSST) M2[2], a 3.4-meter diameter convex asphere and has since been expanded to a versatile design that can be quickly modified to test multiple prescriptions with minimal cost and schedule impacts. The metrology system has facilitated the production of the largest convex optic that Harris has processed and tested.

The metrology approach is a sub-aperture stitching technique that uses a diffractive nulling element. This leverages the rapid production times of the lithography industry to reduce the lead time for test set assembly. For the most common convex component geometries, this test can be ready for use in as little as six months from receipt of specifications.

We will present the development and design of this test methodology. Existing PHAST systems are providing high resolution and accurate data while demonstrating the stability of the overall approach. In addition, the approach is capable of rapid reconfiguration to accommodate testing of multiple convex optics over a range of sizes and specifications.

Paper Details

Date Published: 10 July 2018
PDF: 7 pages
Proc. SPIE 10706, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III, 107061H (10 July 2018); doi: 10.1117/12.2314322
Show Author Affiliations
!!!!!!!!Rebecca !!!!!!!!Wilson Borrelli, Harris Corp. (United States)
Cormic K. Merle, Harris Corp. (United States)
Malcolm N. O'Sullivan, Harris Corp. (United States)


Published in SPIE Proceedings Vol. 10706:
Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III
Ramón Navarro; Roland Geyl, Editor(s)

© SPIE. Terms of Use
Back to Top