Share Email Print

Proceedings Paper

Early detection of lung cancer from CT images: nodule segmentation and classification using deep learning
Author(s): Manu Sharma; Jignesh S. Bhatt; Manjunath V. Joshi
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Lung cancer is one of the most abundant causes of the cancerous deaths worldwide. It has low survival rate mainly due to the late diagnosis. With the hardware advancements in computed tomography (CT) technology, it is now possible to capture the high resolution images of lung region. However, it needs to be augmented by efficient algorithms to detect the lung cancer in the earlier stages using the acquired CT images. To this end, we propose a two-step algorithm for early detection of lung cancer. Given the CT image, we first extract the patch from the center location of the nodule and segment the lung nodule region. We propose to use Otsu method followed by morphological operations for the segmentation. This step enables accurate segmentation due to the use of data-driven threshold. Unlike other methods, we perform the segmentation without using the complete contour information of the nodule. In the second step, a deep convolutional neural network (CNN) is used for the better classification (malignant or benign) of the nodule present in the segmented patch. Accurate segmentation of even a tiny nodule followed by better classification using deep CNN enables the early detection of lung cancer. Experiments have been conducted using 6306 CT images of LIDC-IDRI database. We achieved the test accuracy of 84.13%, with the sensitivity and specificity of 91.69% and 73.16%, respectively, clearly outperforming the state-of-the-art algorithms.

Paper Details

Date Published: 13 April 2018
PDF: 8 pages
Proc. SPIE 10696, Tenth International Conference on Machine Vision (ICMV 2017), 106960W (13 April 2018); doi: 10.1117/12.2309530
Show Author Affiliations
Manu Sharma, Indian Institute of Information Technology (India)
Jignesh S. Bhatt, Indian Institute of Information Technology (India)
Manjunath V. Joshi, Dhirubhai Ambani Institute of Information and Communication Technology (India)

Published in SPIE Proceedings Vol. 10696:
Tenth International Conference on Machine Vision (ICMV 2017)
Antanas Verikas; Petia Radeva; Dmitry Nikolaev; Jianhong Zhou, Editor(s)

© SPIE. Terms of Use
Back to Top