Share Email Print
cover

Proceedings Paper • new

Age and gender estimation using Region-SIFT and multi-layered SVM
Author(s): Hyunduk Kim; Sang-Heon Lee; Myoung-Kyu Sohn; Byunghun Hwang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this paper, we propose an age and gender estimation framework using the region-SIFT feature and multi-layered SVM classifier. The suggested framework entails three processes. The first step is landmark based face alignment. The second step is the feature extraction step. In this step, we introduce the region-SIFT feature extraction method based on facial landmarks. First, we define sub-regions of the face. We then extract SIFT features from each sub-region. In order to reduce the dimensions of features we employ a Principal Component Analysis (PCA) and a Linear Discriminant Analysis (LDA). Finally, we classify age and gender using a multi-layered Support Vector Machines (SVM) for efficient classification. Rather than performing gender estimation and age estimation independently, the use of the multi-layered SVM can improve the classification rate by constructing a classifier that estimate the age according to gender. Moreover, we collect a dataset of face images, called by DGIST_C, from the internet. A performance evaluation of proposed method was performed with the FERET database, CACD database, and DGIST_C database. The experimental results demonstrate that the proposed approach classifies age and performs gender estimation very efficiently and accurately.

Paper Details

Date Published: 13 April 2018
PDF: 8 pages
Proc. SPIE 10696, Tenth International Conference on Machine Vision (ICMV 2017), 106962J (13 April 2018); doi: 10.1117/12.2309441
Show Author Affiliations
Hyunduk Kim, DGIST (Korea, Republic of)
Sang-Heon Lee, DGIST (Korea, Republic of)
Myoung-Kyu Sohn, DGIST (Korea, Republic of)
Byunghun Hwang, DGIST (Korea, Republic of)


Published in SPIE Proceedings Vol. 10696:
Tenth International Conference on Machine Vision (ICMV 2017)
Antanas Verikas; Petia Radeva; Dmitry Nikolaev; Jianhong Zhou, Editor(s)

© SPIE. Terms of Use
Back to Top