Share Email Print
cover

Proceedings Paper • Open Access

The Lunar Orbiter Laser Altimeter (LOLA) on NASA's Lunar Reconnaissance Orbiter (LRO) mission
Author(s): H. Riris; J. Cavanaugh; X. Sun; P. Liiva; M. Rodriguez; G. Neuman

Paper Abstract

The Lunar Orbiter Laser Altimeter (LOLA) instrument [1-3] on NASA’s Lunar Reconnaissance Orbiter (LRO) mission, launched on June 18th, 2009, from Kennedy Space Center, Florida, will provide a precise global lunar topographic map using laser altimetry. LOLA will assist in the selection of landing sites on the Moon for future robotic and human exploration missions and will attempt to detect the presence of water ice on or near the surface, which is one of the objectives of NASA’s Exploration Program.

Our present knowledge of the topography of the Moon is inadequate for determining safe landing areas for NASA’s future lunar exploration missions. Only those locations, surveyed by the Apollo missions, are known with enough detail. Knowledge of the position and characteristics of the topographic features on the scale of a lunar lander are crucial for selecting safe landing sites. Our present knowledge of the rest of the lunar surface is at approximately 1 km kilometer level and in many areas, such as the lunar far side, is on the order of many kilometers. LOLA aims to rectify that and provide a precise map of the lunar surface on both the far and near side of the moon.

LOLA uses short (6 ns) pulses from a single laser through a Diffractive Optical Element (DOE) to produce a five-beam pattern that illuminates the lunar surface. For each beam, LOLA measures the time of flight (range), pulse spreading (surface roughness), and transmit/return energy (surface reflectance). LOLA will produce a high-resolution global topographic model and global geodetic framework that enables precise targeting, safe landing, and surface mobility to carry out exploratory activities. In addition, it will characterize the polar illumination environment, and image permanently shadowed regions of the lunar surface to identify possible locations of surface ice crystals in shadowed polar craters.

Paper Details

Date Published: 20 November 2017
PDF: 6 pages
Proc. SPIE 10565, International Conference on Space Optics — ICSO 2010, 105650F (20 November 2017); doi: 10.1117/12.2309209
Show Author Affiliations
H. Riris, NASA Goddard Space Flight Ctr. (United States)
J. Cavanaugh, NASA Goddard Space Flight Ctr. (United States)
X. Sun, NASA Goddard Space Flight Ctr. (United States)
P. Liiva, Sigma Space (United States)
M. Rodriguez, Sigma Space (United States)
G. Neuman, NASA Goddard Space Flight Ctr. (United States)


Published in SPIE Proceedings Vol. 10565:
International Conference on Space Optics — ICSO 2010
Errico Armandillo; Bruno Cugny; Nikos Karafolas, Editor(s)

© SPIE. Terms of Use
Back to Top