Share Email Print
cover

Proceedings Paper

The improvement of surface roughness for OAP aluminum mirrors: from terahertz to ultraviolet
Author(s): Jilong Peng; Qian Yu; Yajun Shao; Dong Wang; Zhong Yi; Shanshan Wang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Aluminum reflector, especially OAP (Off-Axis Parabolic) reflector, has been widely used in terahertz and infrared systems for its low cost, lightweight, good machinability, small size, simple structure, and having the same thermal expansion and contraction with the system structure which makes it have a wide temperature adaptability. Thorlabs, Daheng and other large optical components companies even have Aluminum OAP sold on shelf. Most of the precision Aluminum OAP is fabricated by SPDT (single point diamond turing). Affected by intermittent shock, the roughness of aluminum OAP mirrors through conventional single-point diamond lathes is around 7 nm which limits the scope of application for aluminum mirrors, like in the high power density terahertz/infrared systems and visible/UV optical systems. In this paper, a continuous process frock is proposed, which effectively reduces the influence of turning impact on the mirror roughness. Using this process, an off-axis parabolic aluminum reflector with an effective diameter of 50 mm, off-axis angle of 90 degree is fabricated, and the performances are validated. Measurement by VEECO NT1100 optical profiler with 20× objects, the surface roughness achieves 2.3 nm, and the surface figure error is within λ/7 RMS (λ= 632.8 nm) tested by FISB Aμ Phase laser interferometer with the help of a standard flat mirror. All these technical specifications are close to the traditional glass-based reflectors, and make it possible for using Aluminum reflectors in the higher LIDT (laser induced damage threshold) systems and even for the micro sensor of ionospheric for vacuum ultraviolet micro nano satellites.

Paper Details

Date Published: 12 January 2018
PDF: 9 pages
Proc. SPIE 10623, 2017 International Conference on Optical Instruments and Technology: IRMMW-THz Technologies and Applications, 106230U (12 January 2018); doi: 10.1117/12.2307670
Show Author Affiliations
Jilong Peng, Beijing Institute of Spacecraft Environment Engineering (China)
Qian Yu, Beijing Institute of Spacecraft Environment Engineering (China)
Yajun Shao, Beijing Institute of Technology (China)
Dong Wang, Huirui Optics Beijing Co., Ltd. (China)
Zhong Yi, Beijing Institute of Spacecraft Environment Engineering (China)
Science and Technology on Reliability and Environment Engineering Lab. (China)
Shanshan Wang, Beijing Institute of Technology (China)


Published in SPIE Proceedings Vol. 10623:
2017 International Conference on Optical Instruments and Technology: IRMMW-THz Technologies and Applications
Cunlin Zhang; Xi-Cheng Zhang; Zhiming Huang; Liquan Dong, Editor(s)

© SPIE. Terms of Use
Back to Top