Share Email Print
cover

Proceedings Paper

Tunable spatial compensation for polarization entangled photons
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The polarization entangled state produced via spontaneous parametric downconversion (SPDC) has relativephase maps in frequency and momentum domains which give an almost complete picture about the distinguishability and purity loss in the conjugate time and space domains. We demonstrate experimentally the tunable compensation of directional relative-phase profile for entangled photons generated by two cascaded / crossed crystals and captured over ultra-wide spatial window. We use a phase-only spatial light modulator (SLM) programmable via a personal computer to flatten (or correct for) the spatial relative-phase profile and also to add on-demand spatial phase profile. A fast, yet accurate, technique is introduced for frequent relative-phase measurements based on the tilt angle of a quarter wave plate (QWP) acting on the diagonally polarized pump beam and nulling the relative-phase of the entangled state at that direction. Our experimental measurements verify previous theoretical models for tunable compensation of the polarization two-photon state produced by the cascaded crystals arrangement.

Paper Details

Date Published: 14 May 2018
PDF: 7 pages
Proc. SPIE 10684, Nonlinear Optics and its Applications 2018, 106841Z (14 May 2018); doi: 10.1117/12.2306942
Show Author Affiliations
Salem F. Hegazy, Cairo Univ. (Egypt)
Salah S. A. Obayya, Zewail City of Science and Technology (Egypt)


Published in SPIE Proceedings Vol. 10684:
Nonlinear Optics and its Applications 2018
Benjamin J. Eggleton; Neil G. R. Broderick; Anna C. Peacock, Editor(s)

© SPIE. Terms of Use
Back to Top