Share Email Print

Proceedings Paper

A coupled temperature-displacement phase field model for grain growth during laser-aided metal deposition
Author(s): Fikret Kh. Mirzade
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Laser metal deposition (LMD) by powder injection is an attractive and innovative additive manufacturing of metals. The key to predict material properties is the state of microstructure. In this paper, we develop a thermodynamically consistent temperature-displacement phase field model for grain growth during the LMD process. The governing equations that follow from the balance laws involve the phase variable, the displacement field, and the temperature field, with significant couplings between all equations. The model includes thermal expansion, transformation dilatation, strain dependency on phase transformation and local mechanical equilibrium conditions. Extensions to plastic models are discussed. Temperature dependencies of material properties (Young's modulus, Poisson's ratio, thermal expansion coefficient) are also included in the model formulation.

Paper Details

Date Published: 22 May 2018
PDF: 8 pages
Proc. SPIE 10675, 3D Printed Optics and Additive Photonic Manufacturing, 106750Y (22 May 2018); doi: 10.1117/12.2306597
Show Author Affiliations
Fikret Kh. Mirzade, Federal Scientific Research Ctr. Crystallography and Photonics (Russian Federation)

Published in SPIE Proceedings Vol. 10675:
3D Printed Optics and Additive Photonic Manufacturing
Alois M. Herkommer; Georg von Freymann; Manuel Flury, Editor(s)

© SPIE. Terms of Use
Back to Top