Share Email Print

Proceedings Paper • new

A dynamic plasmonic microscope (Conference Presentation)
Author(s): Xiao-Cong Yuan

Paper Abstract

A dynamic all-optically controlled surface plasmon polartions (SPP) novel high-performance multi-function optical microscope, combining optical microscopic imaging, bio-sensing and surface enhanced Raman Scattering (SERS) in a single microscopic system, is presented in this talk. This new configuration uses phase shift of SPP standing wave generated from sub-wavelength slit arrays embedded in a thin metal film to achieve super-resolution wide-field microscopic imaging; phase sensitive surface plasmon resonance (pSPR) bio-sensing technology based on differential phase measurement between radially polarized (RP) and azimuthally polarized (AP) beams to obtain an ultra-high sensitivity and a wide dynamic range simultaneously; the coupling between the localized surface plasmon (LSP) of metallic nano-particles and SPP virtual probe with longitudinal electric field to significantly improve the sensitivity of SERS system. With the integration of these three technologies in a single microscopic configuration, the system can achieve wide-field super-resolved imaging of biological specimens, ultra-high sensitivity for molecule detection and real-time monitoring for reaction process of biological samples simultaneously, fulfilling the requirement of multi-parameter multi-function real-time in-situ measurement of biological samples. The new microscopic scheme has great importance in real-time dynamic study on nano-scale biological living cells as well as accurate near field mapping.

Paper Details

Date Published: 23 May 2018
Proc. SPIE 10672, Nanophotonics VII, 106720J (23 May 2018); doi: 10.1117/12.2306115
Show Author Affiliations
Xiao-Cong Yuan, Shenzhen Univ (China)

Published in SPIE Proceedings Vol. 10672:
Nanophotonics VII
David L. Andrews; Angus J. Bain; Jean-Michel Nunzi; Andreas Ostendorf, Editor(s)

© SPIE. Terms of Use
Back to Top