Share Email Print

Proceedings Paper

Multispectral remote sensing for yield estimation using high-resolution imagery from an unmanned aerial vehicle
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Satellites and autonomous unmanned aerial vehicles (UAVs) are two major platforms for acquiring remotely-sensed information of the earth’s surface. Due to the limitations of satellite-based imagery, such as coarse spatial resolution and fixed schedules, applications of UAVs as low-cost remote sensing systems are rapidly expanding in many research areas, particularly precision agriculture. UAVs can provide imagery with high spatial resolution (finer than 1 meter) and acquire information in visible, near infrared, and even thermal bands. In agriculture, vegetation characteristics such as health, water stress, and the amount of biomass, can be estimated using UAV imagery. In this study, three sets of high-resolution aerial imagery have been used for yield estimation based on vegetation indices. These images were captured by the Utah State University AggieAir™ UAV system flown in June 2017, August 2017, and October 2017 over a field experiment pasture site located in northern Utah. The pasture study area is primarily tall fescue. The field experiment includes 20 50 x 20-m plots, with 4 replications of 5 irrigation levels. Approximately 60 yield samples were harvested after each flight. Sample locations were recorded with high-accuracy real-time kinematic (RTK) GPS. In addition, the leaf area index (LAI) for each sample plot was measured using an optical sensor (LAI2200C) before harvesting. The relationship of yield for each sample versus vegetation indices (VIs) was explored. The VIs include the normalized difference vegetation index (NDVI), calculated using AggieAir imagery, and LAI measured using a ground-based sensor. The results of this study reveal the correlation between vegetation indices and the amount of biomass.

Paper Details

Date Published: 21 May 2018
PDF: 10 pages
Proc. SPIE 10664, Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping III, 106640K (21 May 2018); doi: 10.1117/12.2305888
Show Author Affiliations
Mahyar Aboutalebi, Utah State Univ. (United States)
Alfonso F. Torres-Rua, Utah State Univ. (United States)
Niel Allen, Utah State Univ. (United States)

Published in SPIE Proceedings Vol. 10664:
Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping III
J. Alex Thomasson; Mac McKee; Robert J. Moorhead, Editor(s)

© SPIE. Terms of Use
Back to Top