Share Email Print

Proceedings Paper

Controlling light with quantum dot spin on-a-chip
Author(s): Edo Waks
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The implementation of quantum networks and distributive quantum information processing relies on interaction between stationary matter qubits and flying photons1-6. The spin of a single electron or hole confined in a charged quantum dot is considered as a promising matter qubit as it possesses microsecond coherence time7,8 and allows picosecond timescale control using optical pulses9-12. The quantum dot spin can also interact with a photon by controlling the optical response of a strongly coupled cavity13-15. So far most experimental demonstrations of the cavity spectrum control have used neutral quantum dots16,17. Spin-dependent cavity spectrum has not been reported yet. Here, we report an experimental realization of a spin-photon transistor using a strongly coupled quantum dot and cavity system. We show large modulation of the cavity reflectivity by manipulating the spin states of the quantum dot. The spin-photon transistor is crucial for realizing a quantum logic gate or generating hybrid entanglement between a quantum dot spin and a photon18-21. Our results represent an important step towards semiconductor based quantum logic devices and on-chip quantum networks.

Paper Details

Date Published: 8 May 2018
PDF: 6 pages
Proc. SPIE 10639, Micro- and Nanotechnology Sensors, Systems, and Applications X, 1063905 (8 May 2018); doi: 10.1117/12.2305568
Show Author Affiliations
Edo Waks, Univ. of Maryland, College Park (United States)

Published in SPIE Proceedings Vol. 10639:
Micro- and Nanotechnology Sensors, Systems, and Applications X
Thomas George; Achyut K. Dutta; M. Saif Islam, Editor(s)

© SPIE. Terms of Use
Back to Top