Share Email Print

Proceedings Paper

A clutter-agnostic generalized labeled multi-Bernoulli filter
Author(s): Ronald Mahler
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The labeled random finite set (LRFS) theory of B.-T. Vo and B.-N. Vo is the first systematic, theoretically rigorous formulation of true multitarget tracking, and is the basis for the generalized labeled multi-Bernoulli (GLMB) filter (the first implementable and provably Bayes-optimal multitarget tracking algorithm). Like most multitarget trackers, the GLMB filter is based on the assumption that clutter statistics are known a priori. Recent research has introduced RFS filters that are "clutter-agnostic," in the sense that they can address unknown, dynamically evolving clutter. These filters were unlabeled, however. In this paper we devise a clutter-agnostic GLMB (CA-GLMB) filter, based on the Bernoulli clutter-generator concept.

Paper Details

Date Published: 27 April 2018
PDF: 12 pages
Proc. SPIE 10646, Signal Processing, Sensor/Information Fusion, and Target Recognition XXVII, 106460D (27 April 2018); doi: 10.1117/12.2305464
Show Author Affiliations
Ronald Mahler, Random Sets, LLC (United States)

Published in SPIE Proceedings Vol. 10646:
Signal Processing, Sensor/Information Fusion, and Target Recognition XXVII
Ivan Kadar, Editor(s)

© SPIE. Terms of Use
Back to Top