Share Email Print
cover

Proceedings Paper • new

Adaptive measurement design for direction of arrival estimation and target tracking
Author(s): Ali Cafer Gurbuz
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Compressive sensing theory states that a sparse vector x in dictionary A can be recovered from measurements y = WAx. For recovery of x, the measurement matrix W is generally chosen as random since a random W is sufficiently incoherent with a given basis A with high probability. Although Gaussian or Bernoulli random measurement matrices satisfy recovery requirements, they do not necessarily yield the best performance in terms of minimal mutual coherence or best parameter estimation. In literature several studies focused on measurement matrix design mainly to minimize some form of coherence between W and A to minimize measurement numbers while exact reconstruction is guaranteed. On the other hand, for enhanced parameter estimation W can be designed to minimize the Cramer Rao Lower Bound (CRLB). In this study, we propose direct and sequential measurement designs that minimizes the CRLB for the application of direction of arrival (DoA) estimation. Based on our results an adaptive target tracking procedure for single and multiple target scenarios is also proposed. Initial simulations show that measurement design solutions provide enhanced parameter estimation and target tracking performance compared to widely used random matrices in compressive sensing.

Paper Details

Date Published: 14 May 2018
PDF: 9 pages
Proc. SPIE 10658, Compressive Sensing VII: From Diverse Modalities to Big Data Analytics, 106580A (14 May 2018); doi: 10.1117/12.2305048
Show Author Affiliations
Ali Cafer Gurbuz, The Univ. of Alabama (United States)


Published in SPIE Proceedings Vol. 10658:
Compressive Sensing VII: From Diverse Modalities to Big Data Analytics
Fauzia Ahmad, Editor(s)

© SPIE. Terms of Use
Back to Top