Share Email Print

Proceedings Paper • new

Breast cancer screening using convolutional neural network and follow-up digital mammography
Author(s): Yufeng Zheng; Clifford Yang; Alex Merkulov
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We propose a computer-aided detection (CAD) method for breast cancer screening using convolutional neural network (CNN) and follow-up scans. First, mammographic images are examined by three cascading object detectors to detect suspicious cancerous regions. Then all regional images are fed to a trained CNN (based on the pre-trained VGG-19 model) to filter out false positives. Three cascading detectors are trained with Haar features, local binary pattern (LBP) and histograms of oriented gradient (HOG) separately via an AdaBoost approach. The bounding boxes (BBs) from three featured detectors are merged to generate a region proposal. Each regional image, consisting of three channels, current scan (red channel), registered prior scan (green channel) and their difference (blue channel), is scaled to 224×224×3 for CNN classification. We tested the proposed method using our digital mammographic database including 69 cancerous subjects of mass, architecture distortion, and 27 healthy subjects, each of which includes two scans, current (cancerous or healthy), prior scan (healthy 1 year before). On average 165 BBs are created by three cascading classifiers on each mammogram, but only 3 BBs remained per image after the CNN classification. The overall performance is described as follows: sensitivity = 0.928, specificity = 0.991, FNR = 0.072, and FPI (false positives per image) = 0.004. Considering the early-stage cancerous status (1-year ago was normal), the performance of the proposed CAD method is very promising.

Paper Details

Date Published: 14 May 2018
PDF: 13 pages
Proc. SPIE 10669, Computational Imaging III, 1066905 (14 May 2018); doi: 10.1117/12.2304564
Show Author Affiliations
Yufeng Zheng, Alcorn State Univ. (United States)
Clifford Yang, Univ. of Connecticut Health Ctr. (United States)
Alex Merkulov, Univ. of Connecticut Health Ctr. (United States)

Published in SPIE Proceedings Vol. 10669:
Computational Imaging III
Abhijit Mahalanobis; Amit Ashok; Lei Tian; Jonathan C. Petruccelli, Editor(s)

© SPIE. Terms of Use
Back to Top