Share Email Print
cover

Proceedings Paper

High-speed optical recording with rare-earth-doped hole-burning materials
Author(s): Ravinder Kachru; Xiao An Shen
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We are developing a high density, high speed optical memory, using rare-earth doped hole- burning materials. These materials are theoretically capable of achieving storage densities of 1000 Gigabits/cm3 at input/output (I/O) rates of several gigabits/sec. One remarkable attribute of this storage concept is that both the temporal and spatial information encoded on a laser beam can be stored. Because both the temporal and spatial information can be stored, digital data can be recorded serially as a data or packet stream as well as holographically using the page format. During the past year we have achieved a breakthrough in demonstrating random access holographic data storage at high frame rates. Five hundred holograms were stored and retrieved with very good fidelity at 30 Hz (video rate). Each holographic image with 512 multiplied by 488 pixels could be randomly accessed during the storage and retrieval process. This frame rate is the highest demonstrated frame rate for any optical technique. This breakthrough was achieved through the invention of a memory architecture that allows multiple holographic frames to be stored without any mechanical beam scanning. In this new architecture multiplexing of 500 holograms was achieved by stepping the laser frequency over a range covered by high speed acousto-optic modulators (AOM).

Paper Details

Date Published: 15 January 1996
PDF: 4 pages
Proc. SPIE 2604, High-Density Data Recording and Retrieval Technologies, (15 January 1996); doi: 10.1117/12.230053
Show Author Affiliations
Ravinder Kachru, SRI International (United States)
Xiao An Shen, SRI International (United States)


Published in SPIE Proceedings Vol. 2604:
High-Density Data Recording and Retrieval Technologies
Ted A. Schwarz; Martin Francis, Editor(s)

© SPIE. Terms of Use
Back to Top