Share Email Print
cover

Proceedings Paper • new

Constructing a robust PSCAR process for EUV
Author(s): Michael Carcasi; Seiji Nagahara; Gosuke Shiraishi; Yukie Minekawa; Hiroyuki Ide; Yoshihiro Kondo; Kosuke Yoshihara; Masaru Tomono; Ryo Shimada; Kazuhiro Takeshita; Teruhiko Moriya; Yuya Kamei; Kathleen Nafus; Serge Biesemans; Hideo Nakashima; Masafumi Hori; Ken Maruyama; Hisashi Nakagawa; Tomoki Nagai; Satoshi Dei; Masayuki Miyake; Takehiko Naruoka; Motoyuki Shima; Geert Vandenberghe; Danilo De Simone; Philippe Foubert; John S. Petersen; Akihiro Oshima; Seiichi Tagawa
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In order to lower the cost of ownership of EUV lithography, high sensitivity EUV resists , enabling higher throughput of EUV scanners are being explored. The concept that utilizes a Photosensitized Chemically Amplified ResistTM (PSCARTM) is a promising solution for achieving increased resist sensitivity, while maintaining other high performance characteristics of the material (i.e., resolution, line edge roughness (LER), exposure latitude). PSCAR uses a UV exposure after EUV exposure and selective absorption to meet these goals . Preliminary results have been discussed in previous papers 1-8.

PSCAR utilizes an area-selective photosensitization mechanism to generate more acid in the exposed areas during a UV exposure. PSCAR is an attempt to break the resolution, line-edge-roughness, and sensitivity trade-off (RLS trade-off) relationships that limit standard chemically amplified resists. The photosensitizer, which is generated in exposed area by a photoacid catalytic reaction, absorbs the UV exposure light selectively and generates additional acid in the exposed area only.

Material development and UV exposure uniformity are the key elements of PSCAR technology for semiconductor mass fabrication. This paper will review the approaches toward improvement of PSCAR resist process robustness. The chemistry’s EUV exposure cycle of learning results from experiments at imec will be discussed.

Paper Details

Date Published: 27 March 2018
PDF: 14 pages
Proc. SPIE 10583, Extreme Ultraviolet (EUV) Lithography IX, 105831M (27 March 2018); doi: 10.1117/12.2297370
Show Author Affiliations
Michael Carcasi, Tokyo Electron America, Inc. (United States)
Seiji Nagahara, Tokyo Electron Ltd. (Japan)
Gosuke Shiraishi, Tokyo Electron Kyushu Ltd. (Japan)
Yukie Minekawa, Tokyo Electron Kyushu Ltd. (Japan)
Hiroyuki Ide, Tokyo Electron Kyushu Ltd. (Japan)
Yoshihiro Kondo, Tokyo Electron Kyushu Ltd. (Japan)
Kosuke Yoshihara, Tokyo Electron Kyushu Ltd. (Japan)
Masaru Tomono, Tokyo Electron Kyushu Ltd. (Japan)
Ryo Shimada, Tokyo Electron Kyushu Ltd. (Japan)
Kazuhiro Takeshita, Tokyo Electron Kyushu Ltd. (Japan)
Teruhiko Moriya, Tokyo Electron Kyushu Ltd. (Japan)
Yuya Kamei, Tokyo Electron Kyushu Ltd. (Belgium)
IMEC (Belgium)
Kathleen Nafus, Tokyo Electron America, Inc. (Belgium)
IMEC (Belgium)
Serge Biesemans, Tokyo Electron Europe Ltd. (Belgium)
IMEC (Belgium)
Hideo Nakashima, Tokyo Electron Ltd. (Japan)
Masafumi Hori, JSR Corp. (Japan)
Ken Maruyama, JSR Corp. (Japan)
Hisashi Nakagawa, JSR Corp. (Japan)
Tomoki Nagai, JSR Corp. (Japan)
Satoshi Dei, JSR Micro N.V. (Belgium)
Masayuki Miyake, JSR Micro N.V. (Belgium)
Takehiko Naruoka, JSR Micro N.V. (Belgium)
Motoyuki Shima, JSR Corp. (Japan)
Geert Vandenberghe, IMEC (Belgium)
Danilo De Simone, IMEC (Belgium)
Philippe Foubert, IMEC (Belgium)
John S. Petersen, IMEC (Belgium)
Akihiro Oshima, Osaka Univ. (Japan)
Seiichi Tagawa, Osaka Univ. (Japan)


Published in SPIE Proceedings Vol. 10583:
Extreme Ultraviolet (EUV) Lithography IX
Kenneth A. Goldberg, Editor(s)

© SPIE. Terms of Use
Back to Top