Share Email Print

Proceedings Paper • new

Piezoelectric charging and wireless communication
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Modern medicine is undergoing a revolution in the application of new sensor capabilities for aiding in diagnosis of specific conditions and monitoring a variety of informative vital signs. In the past, many of the measurements were limited by what could be accomplished externally. A shift toward in-vivo monitoring for both diagnostic and therapeutic sensing and actuation [1] has created a need for low power electronics, high energy density batteries and methods to successfully power devices embedded in the body. For a review of the field and sensing capabilities see [2]. Recent studies suggest that charging with ultrasound is more efficient at longer transmission distance (< 10cm) than inductive charging [3]. In this manuscript, we discuss the modeling and experimentation that we have accomplished and demonstrate in ultrasonic charging of sensors having the form and fit of in-vivo sensors. The task goal has been to use piezoelectric transducers for wireless communication and powering of sensors internal to the human body with a goal to transmit power levels of 100 μW a receiver with receiving area of 3x3 mm2 over a distance of 16 cm equivalent to human body interior. The results suggest that we can transmit power levels that exceed this baseline requirement.

Paper Details

Date Published: 27 March 2018
PDF: 13 pages
Proc. SPIE 10598, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2018, 1059810 (27 March 2018); doi: 10.1117/12.2296645
Show Author Affiliations
Hyeong Jae Lee, Jet Propulsion Lab. (United States)
Xiaoqi Bao, Jet Propulsion Lab. (United States)
Stewart Sherrit, Jet Propulsion Lab. (United States)
Yoseph Bar-Cohen, Jet Propulsion Lab. (United States)
Mircea Badescu, Jet Propulsion Lab. (United States)
Shannon Jackson, Jet Propulsion Lab. (United States)

Published in SPIE Proceedings Vol. 10598:
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2018
Hoon Sohn, Editor(s)

© SPIE. Terms of Use
Back to Top