Share Email Print
cover

Proceedings Paper

Optimization of femtosecond laser micromachining of polylactide and PLLA/HAp composite
Author(s): Bogusz D. Stępak; Konrad Szustakiewicz; Arkadiusz J. Antończak
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper presents results of poly(L-lactide) and poly(L-lactide)/hydroxyapatite composite cutting optimization using 2nd harmonic of femtosecond fiber laser. There are several limitations regarding the use of femtosecond lasers for processing of heat-sensitive medical grade polymers such as poly(L-lactide) (PLLA). Improper use of ultrashort pulse laser may lead to heat load into surrounding material causing its melting and crack formation when excessive energy is deposited and pulse repetition frequency is too high. The optimization of laser parameters is necessary not only because of heat but also due to reflection and scattering of incident light in high aspect ratio V-shaped groove resulting in decrease of ablation rate with an increasing number of repetitions. This problem is especially important in case of polymer foils thicker than 200 μm and the beam spot size which is typically around 15 - 30 μm in commercial systems. In this work we present threshold fluence and ablation rates for three types of material: amorphous PLLA, crystalline PLLA and PLLA/hydroxyapatite composite. For those materials in form of thick foils (∼400 μm) we performed cutting optimization. A significant improvement of cutting efficiency in case of thick foils was made by applying a method of multiple, overlapped cuts.

Paper Details

Date Published: 19 February 2018
PDF: 8 pages
Proc. SPIE 10520, Laser-based Micro- and Nanoprocessing XII, 105201V (19 February 2018); doi: 10.1117/12.2296433
Show Author Affiliations
Bogusz D. Stępak, Wroclaw Univ. of Science and Technology (Poland)
Konrad Szustakiewicz, Wroclaw Univ. of Science and Technology (Poland)
Arkadiusz J. Antończak, Wroclaw Univ. of Science and Technology (Poland)


Published in SPIE Proceedings Vol. 10520:
Laser-based Micro- and Nanoprocessing XII
Udo Klotzbach; Kunihiko Washio; Rainer Kling, Editor(s)

© SPIE. Terms of Use
Back to Top