Share Email Print
cover

Proceedings Paper

Dimensionality-varied convolutional neural network for spectral-spatial classification of hyperspectral data
Author(s): Wanjun Liu; Xuejian Liang; Haicheng Qu
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Hyperspectral image (HSI) classification is one of the most popular topics in remote sensing community. Traditional and deep learning-based classification methods were proposed constantly in recent years. In order to improve the classification accuracy and robustness, a dimensionality-varied convolutional neural network (DVCNN) was proposed in this paper. DVCNN was a novel deep architecture based on convolutional neural network (CNN). The input of DVCNN was a set of 3D patches selected from HSI which contained spectral-spatial joint information. In the following feature extraction process, each patch was transformed into some different 1D vectors by 3D convolution kernels, which were able to extract features from spectral-spatial data. The rest of DVCNN was about the same as general CNN and processed 2D matrix which was constituted by by all 1D data. So that the DVCNN could not only extract more accurate and rich features than CNN, but also fused spectral-spatial information to improve classification accuracy. Moreover, the robustness of network on water-absorption bands was enhanced in the process of spectral-spatial fusion by 3D convolution, and the calculation was simplified by dimensionality varied convolution. Experiments were performed on both Indian Pines and Pavia University scene datasets, and the results showed that the classification accuracy of DVCNN improved by 32.87% on Indian Pines and 19.63% on Pavia University scene than spectral-only CNN. The maximum accuracy improvement of DVCNN achievement was 13.72% compared with other state-of-the-art HSI classification methods, and the robustness of DVCNN on water-absorption bands noise was demonstrated.

Paper Details

Date Published: 15 November 2017
PDF: 8 pages
Proc. SPIE 10605, LIDAR Imaging Detection and Target Recognition 2017, 106053S (15 November 2017); doi: 10.1117/12.2295865
Show Author Affiliations
Wanjun Liu, Liaoning Technical Univ. (China)
Xuejian Liang, Liaoning Technical Univ. (China)
Haicheng Qu, Liaoning Technical Univ. (China)


Published in SPIE Proceedings Vol. 10605:
LIDAR Imaging Detection and Target Recognition 2017
Yueguang Lv; Weimin Bao; Weibiao Chen; Zelin Shi; Jianzhong Su; Jindong Fei; Wei Gong; Shensheng Han; Weiqi Jin; Jian Yang, Editor(s)

© SPIE. Terms of Use
Back to Top