Share Email Print
cover

Proceedings Paper • new

Design of crossed planar phase grating for metrology
Author(s): Yu Tang; Xinrong Chen; Chaoming Li; Rui Wang; Haiyan Xu; Yushui Cheng
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Crossed-grating is widely used as the standard element for metrology in two-dimensional precision positioning system. It has many advantages such as high resolution, compact structure, good environmental adaptability and less Abbe error. In this paper, the design of crossed planar reflecting phase grating used under the Littrow condition with circularly polarized light at 780nm wavelength has been carried out. The aim of the design is to find out the range of structure parameters of crossed-grating that has higher -1st order diffraction efficiency and good efficiency equilibrium for both of TE- and TM-polarized incident lights. By adoption of the Fourier modal method (FMM), the microstructure parameters of the 1200lines/mm crossed grating with the duty cycle range of 10% to 50% and the profile depth of 150nm to 350nm have been searched exactly. The calculation results show that: When the duty cycle range of the grating is 42% to 44% and profile depth is 210nm to 220nm, the -1st diffraction efficiencies of TE- and TM-polarized lights are both above 60% and the efficiency equilibrium is better than 80%.

Paper Details

Date Published: 12 January 2018
PDF: 8 pages
Proc. SPIE 10621, 2017 International Conference on Optical Instruments and Technology: Optoelectronic Measurement Technology and Systems, 106211D (12 January 2018); doi: 10.1117/12.2294988
Show Author Affiliations
Yu Tang, Soochow Univ. (China)
Xinrong Chen, Soochow Univ. (China)
Chaoming Li, Soochow Univ. (China)
Rui Wang, Soochow Univ. (China)
Haiyan Xu, Soochow Univ. (China)
Yushui Cheng, Soochow Univ. (China)


Published in SPIE Proceedings Vol. 10621:
2017 International Conference on Optical Instruments and Technology: Optoelectronic Measurement Technology and Systems
Jigui Zhu; Hwa-Yaw Tam; Kexin Xu; Hai Xiao; Liquan Dong, Editor(s)

© SPIE. Terms of Use
Back to Top