Share Email Print
cover

Proceedings Paper

Synchronous separation, seaming, sealing and sterilization (S4) using brazing for sample containerization and planetary protection
Author(s): Yoseph Bar-Cohen; Mircea Badescu; Stewart Sherrit; Xiaoqi Bao; Cameron Lindsey; Thomas Kutzer ; Eduardo Salazar
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The return of samples back to Earth in future missions would require protection of our planet from the risk of bringing uncontrolled biological materials back with the samples. This protection would require “breaking the chain of contact (BTC)”, where any returned material reaching Earth for further analysis would have to be sealed inside a container with extremely high confidence. Therefore, the acquired samples would need to be contained while destroying any potential biological materials that may contaminate the external surface of the container. A novel process that could be used to contain returning samples has been developed and demonstrated in a quarter scale size. The process consists of brazing using non-contact induction heating that synchronously separates, seams, seals and sterilizes (S4) the container. The use of brazing involves melting at temperatures higher than 500°C and this level of heating assures sterilization of the exposed areas since all carbon bonds (namely, organic materials) are broken at this temperature. The mechanism consists of a double wall container with inner and outer shells having Earth-clean interior surfaces. The process consists of two-steps, Step-1: the double wall container halves are fabricated and brazed (equivalent to production on Earth); and Step-2 is the S4 process and it is the equivalent to the execution on-orbit around Mars. In a potential future mission, the double wall container would be split into two halves and prepared on Earth. The potential on-orbit execution would consist of inserting the orbiting sample (OS) container into one of the halves and then mated to the other half and brazed. The latest results of this effort will be described and discussed in this manuscript.

Paper Details

Date Published: 22 March 2018
PDF: 8 pages
Proc. SPIE 10596, Behavior and Mechanics of Multifunctional Materials and Composites XII, 105961I (22 March 2018); doi: 10.1117/12.2294566
Show Author Affiliations
Yoseph Bar-Cohen, Jet Propulsion Lab. (United States)
Mircea Badescu, Jet Propulsion Lab. (United States)
Stewart Sherrit, Jet Propulsion Lab. (United States)
Xiaoqi Bao, Jet Propulsion Lab. (United States)
Cameron Lindsey, Jet Propulsion Lab. (United States)
Thomas Kutzer , Jet Propulsion Lab. (United States)
Eduardo Salazar, Jet Propulsion Lab. (United States)


Published in SPIE Proceedings Vol. 10596:
Behavior and Mechanics of Multifunctional Materials and Composites XII
Hani E. Naguib, Editor(s)

© SPIE. Terms of Use
Back to Top