Share Email Print

Proceedings Paper

Calibration of a color CCD camera with 3000X2300 picture elements
Author(s): Reimar Lenz; Udo Lenz
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A newly developed imaging principle, two dimensional microscanning with Piezo-controlled Aperture Displacement (PAD), allows for high image resolutions. The advantages of line scanners (high resolu- tion) are combined with those of CCD area sensors (high light sensitivity, geometrical accuracy and stabi- lity, easy focussing, illumination control and selection of field of view by means of TV real-time imag- ing). A custom designed sensor, optimized for small sensor element apertures and color fidelity, elimi- nates the need for color filter revolvers or mechanical shutters and guarantees good color convergence. By altering the computer controlled microscan patterns, spatial and temporal resolution become interchange- able, their product being a constant. The highest temporal resolution is TV real-time (50 fields/sec), the highest spatial resolution is 2994 x 2320 picture elements (Pels) for each of the three color channels (28 MBytes of raw image data in 8 sec). Thus for the first time it becomes possible to take 35mm slide quali- ty, still color images of natural 3D scenes by purely electronic means. Nearly "square" Pels as well as hexagonal sampling schemes are possible. Excellent geometrical accuracy and low noise is guaranteed by sensor element (Sel) synchronous analog to digital conversion within the camera head. The cameras principle of operation and the procedure to calibrate the two-dimensional piezo-mechanical motion with an accuracy of less than 0.2[tm RMSE in image space is explained. Latter uses a fast algo- rithm to estimate the shift between image pairs with an accuracy of about 1/1000 Sel, based on greyvalue gradients modelled as second order polynomials. The remaining positioning inaccuracy may be further reduced by adaptively postprocessing the high-resolution images.

Paper Details

Date Published: 1 August 1990
PDF: 8 pages
Proc. SPIE 1395, Close-Range Photogrammetry Meets Machine Vision, 13950F (1 August 1990); doi: 10.1117/12.2294258
Show Author Affiliations
Reimar Lenz, Technische Univ. München (Germany)
Udo Lenz, CCD Videometrie (Germany)

Published in SPIE Proceedings Vol. 1395:
Close-Range Photogrammetry Meets Machine Vision
Armin Gruen; Emmanuel P. Baltsavias, Editor(s)

© SPIE. Terms of Use
Back to Top