Share Email Print
cover

Proceedings Paper • new

Single image super resolution algorithm based on edge interpolation in NSCT domain
Author(s): Mengqun Zhang; Wei Zhang; Xinyu He
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In order to preserve the texture and edge information and to improve the space resolution of single frame, a superresolution algorithm based on Contourlet (NSCT) is proposed. The original low resolution image is transformed by NSCT, and the directional sub-band coefficients of the transform domain are obtained. According to the scale factor, the high frequency sub-band coefficients are amplified by the interpolation method based on the edge direction to the desired resolution. For high frequency sub-band coefficients with noise and weak targets, Bayesian shrinkage is used to calculate the threshold value. The coefficients below the threshold are determined by the correlation among the sub-bands of the same scale to determine whether it is noise and de-noising. The anisotropic diffusion filter is used to effectively enhance the weak target in the low contrast region of the target and background. Finally, the high-frequency sub-band is amplified by the bilinear interpolation method to the desired resolution, and then combined with the high-frequency subband coefficients after de-noising and small target enhancement, the NSCT inverse transform is used to obtain the desired resolution image. In order to verify the effectiveness of the proposed algorithm, the proposed algorithm and several common image reconstruction methods are used to test the synthetic image, motion blurred image and hyperspectral image, the experimental results show that compared with the traditional single resolution algorithm, the proposed algorithm can obtain smooth edges and good texture features, and the reconstructed image structure is well preserved and the noise is suppressed to some extent.

Paper Details

Date Published: 15 November 2017
PDF: 8 pages
Proc. SPIE 10605, LIDAR Imaging Detection and Target Recognition 2017, 106052N (15 November 2017); doi: 10.1117/12.2293998
Show Author Affiliations
Mengqun Zhang, Jilin Municipal Public Security Bureau (China)
Wei Zhang, Beihua Univ. (China)
Xinyu He, Beihua Univ. (China)


Published in SPIE Proceedings Vol. 10605:
LIDAR Imaging Detection and Target Recognition 2017
Yueguang Lv; Weimin Bao; Weibiao Chen; Zelin Shi; Jianzhong Su; Jindong Fei; Wei Gong; Shensheng Han; Weiqi Jin; Jian Yang, Editor(s)

© SPIE. Terms of Use
Back to Top