Share Email Print
cover

Proceedings Paper • new

A new method to reduce cone beam artifacts by optimal combination of FDK and TV-IR images
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In a cone beam computed tomography (CT) system, Feldkamp, Davis, and Kress (FDK) algorithm produces cone beam artifacts due to the missing cone region which has the insufficient object sampling in frequency space. While the total variation minimization based iterative reconstruction (TV-IR) may reduce the cone beam artifacts by filling in the missing cone region, it introduces image blurring or noise increase depending on the regularization parameter. In this work, we propose a method to reduce the cone beam artifacts by optimal combination of FDK and TV-IR images. The method maintains the exactness of FDK using FDK data outside the missing cone region and preserves the benefit of TV-IR in cone beam artifact reduction using TV-IR data inside the missing cone region. For the evaluation, defrise disks phantom and vertical plates phantom were used and the image quality was compared using structural similarity (SSIM) with different regularization parameters of TV-IR. The results show that both TV-IR and the proposed method were effective in cone beam artifacts reduction, but the proposed method provided good image quality regardless of the regularization parameter.

Paper Details

Date Published: 2 March 2018
PDF: 6 pages
Proc. SPIE 10574, Medical Imaging 2018: Image Processing, 105741Q (2 March 2018); doi: 10.1117/12.2293444
Show Author Affiliations
Shinkook Choi, Yonsei Univ. (Korea, Republic of)
Jongduk Baek, Yonsei Univ. (Korea, Republic of)


Published in SPIE Proceedings Vol. 10574:
Medical Imaging 2018: Image Processing
Elsa D. Angelini; Bennett A. Landman, Editor(s)

© SPIE. Terms of Use
Back to Top