Share Email Print
cover

Proceedings Paper

Assessment of blood oxygen saturation using spectroscopic photoacoustic imaging as a biomarker for disease progression in a small-animal leukemia model
Author(s): Cayla Wood; Karine Harutyunyan; Jorge De La Cerda; Caterina Kaffes; Niki Zacharias Millward; Sriram Shanmugavelandy; Marina Konopleva; Richard Bouchard
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Acute lymphoblastic leukemia (ALL) interacts with bone marrow cells, creating hypoxic niches that stabilize HIF-1α and promote chemotherapeutic resistance. Spectrosocopic photoacoustic (PA) imaging is a label-free, noninvasive technique that probes the in vivo oxygenation status of hemoglobin, resulting in a measurement of oxygen saturation (SO2) and providing a surrogate measure of tissue hypoxia. This work investigates multispectral PA imaging to assess the SO2 in the femoral bone marrow in mice. Preliminary work was performed to assess the capability of imaging through bone, followed by an oxygen challenge to determine the magnitude of systemic SO2 changes measurable in wild type mice. Furthermore, a pilot study to compare SO2 measured in a murine model of ALL versus in healthy controls was performed to investigate a correlation between SO2 changes in the femoral bone marrow and disease progression. Study results show that femoral SO2 can be measured with a variation less than 10% in wild type mice over multiple time-points. In the oxygen challenge, a 10% difference in systemic SO2 was observed between 100% and 21% O2 inhalation conditions. Additionally, leukemic mice demonstrate significantly more variation in femoral SO2 over the length of the femur than control mice at day 14 post-inoculation, indicating that femoral SO2 is affected by leukemic disease progression. This work demonstrates the feasibility of observing changes in leukemic disease progression through the measurement of SO2 with spectroscopic PA imaging, which could help develop a more complete understanding of the interplay of the local microenvironment with leukemogenesis.

Paper Details

Date Published: 6 March 2018
PDF: 8 pages
Proc. SPIE 10580, Medical Imaging 2018: Ultrasonic Imaging and Tomography, 105800W (6 March 2018); doi: 10.1117/12.2293119
Show Author Affiliations
Cayla Wood, The Univ. of Texas M.D. Anderson Cancer Ctr. (United States)
MD Anderson UTHealth Graduate School (United States)
Karine Harutyunyan, The Univ. of Texas M.D. Anderson Cancer Ctr. (United States)
Jorge De La Cerda, The Univ. of Texas M.D. Anderson Cancer Ctr. (United States)
Caterina Kaffes, The Univ. of Texas M.D. Anderson Cancer Ctr. (United States)
Niki Zacharias Millward, The Univ. of Texas M.D. Anderson Cancer Ctr. (United States)
Sriram Shanmugavelandy, The Univ. of Texas M.D. Anderson Cancer Ctr. (United States)
Marina Konopleva, The Univ. of Texas M.D. Anderson Cancer Ctr. (United States)
MD Anderson UTHealth Graduate School (United States)
Richard Bouchard, The Univ. of Texas M.D. Anderson Cancer Ctr. (United States)
MD Anderson UTHealth Graduate School (United States)


Published in SPIE Proceedings Vol. 10580:
Medical Imaging 2018: Ultrasonic Imaging and Tomography
Neb Duric; Brett C. Byram, Editor(s)

© SPIE. Terms of Use
Back to Top