Share Email Print

Proceedings Paper • new

Realistic tissue visualization using photoacoustic image
Author(s): Seonghee Cho; Ravi Managuli; Seungwan Jeon; Jeesu Kim; Chulhong Kim
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Visualization methods are very important in biomedical imaging. As a technology that understands life, biomedical imaging has the unique advantage of providing the most intuitive information in the image. This advantage of biomedical imaging can be greatly improved by choosing a special visualization method. This is more complicated in volumetric data. Volume data has the advantage of containing 3D spatial information. Unfortunately, the data itself cannot directly represent the potential value. Because images are always displayed in 2D space, visualization is the key and creates the real value of volume data. However, image processing of 3D data requires complicated algorithms for visualization and high computational burden. Therefore, specialized algorithms and computing optimization are important issues in volume data. Photoacoustic-imaging is a unique imaging modality that can visualize the optical properties of deep tissue. Because the color of the organism is mainly determined by its light absorbing component, photoacoustic data can provide color information of tissue, which is closer to real tissue color. In this research, we developed realistic tissue visualization using acoustic-resolution photoacoustic volume data. To achieve realistic visualization, we designed specialized color transfer function, which depends on the depth of the tissue from the skin. We used direct ray casting method and processed color during computing shader parameter. In the rendering results, we succeeded in obtaining similar texture results from photoacoustic data. The surface reflected rays were visualized in white, and the reflected color from the deep tissue was visualized red like skin tissue. We also implemented the CUDA algorithm in an OpenGL environment for real-time interactive imaging.

Paper Details

Date Published: 19 February 2018
PDF: 6 pages
Proc. SPIE 10494, Photons Plus Ultrasound: Imaging and Sensing 2018, 1049433 (19 February 2018); doi: 10.1117/12.2293105
Show Author Affiliations
Seonghee Cho, Pohang Univ. of Science and Technology (Korea, Republic of)
Ravi Managuli, Univ. of Washington (United States)
Seungwan Jeon, Pohang Univ. of Science and Technology (Korea, Republic of)
Jeesu Kim, Pohang Univ. of Science and Technology (Korea, Republic of)
Chulhong Kim, Pohang Univ. of Science and Technology (Korea, Republic of)

Published in SPIE Proceedings Vol. 10494:
Photons Plus Ultrasound: Imaging and Sensing 2018
Alexander A. Oraevsky; Lihong V. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top