Share Email Print
cover

Proceedings Paper

Super-contrast photoacoustic resonance imaging
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In this paper, a new imaging modality, named photoacoustic resonance imaging (PARI), is proposed and experimentally demonstrated. Being distinct from conventional single nanosecond laser pulse induced wideband PA signal, the proposed PARI method utilizes multi-burst modulated laser source to induce PA resonant signal with enhanced signal strength and narrower bandwidth. Moreover, imaging contrast could be clearly improved than conventional single-pulse laser based PA imaging by selecting optimum modulation frequency of the laser source, which originates from physical properties of different materials beyond the optical absorption coefficient. Specifically, the imaging steps is as follows: 1: Perform conventional PA imaging by modulating the laser source as a short pulse to identify the location of the target and the background. 2: Shine modulated laser beam on the background and target respectively to characterize their individual resonance frequency by sweeping the modulation frequency of the CW laser source. 3: Select the resonance frequency of the target as the modulation frequency of the laser source, perform imaging and get the first PARI image. Then choose the resonance frequency of the background as the modulation frequency of the laser source, perform imaging and get the second PARI image. 4: subtract the first PARI image from the second PARI image, then we get the contrast-enhanced PARI results over the conventional PA imaging in step 1. Experimental validation on phantoms have been performed to show the merits of the proposed PARI method with much improved image contrast.

Paper Details

Date Published: 19 February 2018
PDF: 8 pages
Proc. SPIE 10494, Photons Plus Ultrasound: Imaging and Sensing 2018, 104943W (19 February 2018); doi: 10.1117/12.2292635
Show Author Affiliations
Fei Gao, ShanghaiTech Univ. (China)
Nanyang Technological Univ. (Singapore)
Ruochong Zhang, Nanyang Technological Univ. (Singapore)
Xiaohua Feng, Nanyang Technological Univ. (Singapore)
Siyu Liu, Nanyang Technological Univ. (Singapore)
Yuanjin Zheng, Nanyang Technological Univ. (Singapore)


Published in SPIE Proceedings Vol. 10494:
Photons Plus Ultrasound: Imaging and Sensing 2018
Alexander A. Oraevsky; Lihong V. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top