Share Email Print
cover

Proceedings Paper

Spatial-impulse-response-dependent back-projection using the non-stationary convolution in optoacoustic mesoscopy
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Photoacoustic mesoscopy (PAMe), offering high-resolution (sub-100-μm) and high optical contrast imaging at the depth of 1-10 mm, generally obtains massive collection data using a high-frequency focused ultrasonic transducer. The spatial impulse response (SIR) of this focused transducer causes the distortion of measured signals in both duration and amplitude. Thus, the reconstruction method considering the SIR needs to be investigated in the computation-economic way for PAMe. Here, we present a modified back-projection algorithm, by introducing a SIR-dependent calibration process using a non-satationary convolution method. The proposed method is performed on numerical simulations and phantom experiments of microspheres with diameter of both 50 μm and 100 μm, and the improvement of image fidelity of this method is proved to be evident by methodology parameters. The results demonstrate that, the images reconstructed when the SIR of transducer is accounted for have higher contrast-to-noise ratio and more reasonable spatial resolution, compared to the common back-projection algorithm.

Paper Details

Date Published: 19 February 2018
PDF: 7 pages
Proc. SPIE 10494, Photons Plus Ultrasound: Imaging and Sensing 2018, 104943R (19 February 2018); doi: 10.1117/12.2290000
Show Author Affiliations
Tong Lu, Tianjin Univ. (China)
Yihan Wang, Tianjin Univ. (China)
Feng Gao, Tianjin Univ. (China)
Huijuan Zhao, Tianjin Univ. (China)
Vasilis Ntziachristos, Helmholtz Zentrum München GmbH (Germany)
Technische Univ. München (Germany)
Jiao Li, Tianjin Univ. (China)


Published in SPIE Proceedings Vol. 10494:
Photons Plus Ultrasound: Imaging and Sensing 2018
Alexander A. Oraevsky; Lihong V. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top