Share Email Print
cover

Proceedings Paper

Relativistic-intensity near-single-cycle laser system at 1 kHz (Conference Presentation)
Author(s): Frederik Böhle; Andreas Blumenstein; Maïmouna Bocoum; Aline Vernier; Magali Lozano; Jean-Philippe Rousseau; Aurélie Jullien; Dominykas Gustas; Diego Guénot; Jérôme Faure; Máté Kovács; Martin Kretschmar; Peter Simon; Uwe Morgner; Tamás Nagy; Rodrigo López-Martens

Paper Abstract

Controlled few-cycle light waveforms find numerous applications in attosecond science, most notably the production of isolated attosecond pulses in the XUV spectral region for studying ultrafast electronic processes in matter. Scaling up the pulse energy of few-cycle pulses could extend the scope of applications to even higher intensity processes, such as the generation of attosecond pulses with extreme brightness from relativistic plasma mirrors. Hollow-fiber compressors are widely used to produce few-cycle pulses with excellent spatiotemporal quality, whereby octave-spanning broadened spectra can be temporally compressed to near-single-cycle duration. In order to scale up the peak power of hollow-fiber compressors, the effective length and area mode of the fiber has to be increased proportionally, thereby requiring the use of longer waveguides with larger apertures. Thanks to an innovative design utilizing stretched flexible capillaries, we show that a stretched hollow-fiber compressor can generate pulses of TW peak power, the duration of which can be continuously tuned from the input seed laser pulse duration down to almost a single cycle (3.5fs at 750nm central wavelength) simply by increasing the gas pressure at the fiber end. The pulses are characterized online using an integrated d-scan device directly under vacuum. While the pulse duration and chirp are tuned, all other pulse characteristics, such as energy, pointing stability and focal distribution remain the same on target. This unique device makes it possible to explore the generation of high-energy attosecond XUV pulses from plasma mirrors using controllable relativistic-intensity light waveforms at 1kHz.

Paper Details

Date Published: 14 March 2018
PDF
Proc. SPIE 10511, Solid State Lasers XXVII: Technology and Devices, 105111A (14 March 2018); doi: 10.1117/12.2289088
Show Author Affiliations
Frederik Böhle, Ecole Nationale Supérieure de Techniques Avancées (France)
Andreas Blumenstein, Laser-Lab. Göttingen e.V. (Germany)
Maïmouna Bocoum, Ecole Nationale Supérieure de Techniques Avancées (France)
Aline Vernier, Ecole Nationale Supérieure de Techniques Avancées (France)
Magali Lozano, Ecole Nationale Supérieure de Techniques Avancées (France)
Jean-Philippe Rousseau, Ecole Nationale Supérieure de Techniques Avancées (France)
Aurélie Jullien, Ecole Nationale Supérieure de Techniques Avancées (France)
Dominykas Gustas, Ecole Nationale Supérieure de Techniques Avancées (France)
Diego Guénot, Ecole Nationale Supérieure de Techniques Avancées (France)
Jérôme Faure, Ecole Nationale Supérieure de Techniques Avancées (France)
Máté Kovács, ELI-HU Nonprofit Kft. (Hungary)
Martin Kretschmar, Leibniz Univ. Hannover (Germany)
Peter Simon, Laser-Lab. Göttingen e.V. (Germany)
Uwe Morgner, Leibniz Univ. Hannover (Germany)
Tamás Nagy, Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (Germany)
Rodrigo López-Martens, Ecole Nationale Supérieure de Techniques Avancées (France)


Published in SPIE Proceedings Vol. 10511:
Solid State Lasers XXVII: Technology and Devices
W. Andrew Clarkson; Ramesh K. Shori, Editor(s)

© SPIE. Terms of Use
Back to Top