Share Email Print
cover

Proceedings Paper • new

Temperature-dependent phosphorous dopant activation in ZnO thin film deposited using plasma immersion ion implantation
Author(s): Punam Murkute; Hemant Ghadi; Shantanu Saha; Vinayak Chavan; Subhananda Chakrabarti
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

High band gap (3.34 eV) and large exciton binding energy (60 meV) at room temperature facilitates ZnO as a useful candidate for optoelectronics devices. Presence of zinc interstitial and oxygen vacancies results in n-type ZnO film. Phosphorus implantation was carried out using plasma immersion ion implantation technique (2kV, 900W) for constant duration (50 s) on RF sputtered ZnO thin films (Sample A). For dopant activation, sample A was subjected to Rapid Thermal Annealing (RTA) at 700, 800, 900 and 1000°C for 10 s in Oxygen ambient (Sample B, C, D, E). Low temperature (18 K) photoluminescence measurement demonstrated strong donor bound exciton peak for sample A. Dominant donor to acceptor pair peak (DAP) was observed for sample D at around 3.22 eV with linewidth of 131.3 meV. High resolution x-ray diffraction measurement demonstrated (001) and (002) peaks for sample A. (002) peak with high intensity was observed from all annealed samples. Incorporation of phosphorus in ZnO films leads to peak shift towards higher 2θ angle indicate tensile strain in implanted samples. Scanning electron microscopy images reveals improvement in grain size distribution along with reduction of implantation related defects. Raman spectra measured A1(LO) peak at around 576 cm-1 for sample A. Low intensity E2 (high) peak was observed for sample D indicating formation of (PZn+2VZn) complexes. From room temperature Hall measurement, sample D measured 1.17 x 1018 cm -3 carrier concentration with low resistivity of 0.464 Ω.

Paper Details

Date Published: 1 March 2018
PDF: 9 pages
Proc. SPIE 10533, Oxide-based Materials and Devices IX, 105332K (1 March 2018); doi: 10.1117/12.2288944
Show Author Affiliations
Punam Murkute, Indian Institute of Technology (India)
Hemant Ghadi, Indian Institute of Technology (India)
Shantanu Saha, Madanapalle Institute of Technology and Science (India)
Vinayak Chavan, Indian Institute of Technology (India)
Subhananda Chakrabarti, Indian Institute of Technology (India)


Published in SPIE Proceedings Vol. 10533:
Oxide-based Materials and Devices IX
David J. Rogers; David C. Look; Ferechteh H. Teherani, Editor(s)

© SPIE. Terms of Use
Back to Top