Share Email Print

Proceedings Paper

Development of photoacoustic imaging system of finger vasculature using ring-shaped ultrasound transducer
Author(s): Misaki Nishiyama; Takeshi Namita; Kengo Kondo; Makoto Yamakawa; Tsuyoshi Shiina
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

For early diagnosis of rheumatoid arthritis (RA), it is important to visualize its potential marker, vascularization in the synovial membrane of the finger joints. Photoacoustic (PA) imaging, which can image blood vessels at high contrast and resolution is expected to be a potential modality for earlier diagnosis of RA. In previous studies of PA finger imaging, different acoustic schemes such as linear or arc-shaped arrays have been utilized, but these have limited detection views, rendering inaccurate reconstruction, and most of them require rotational detection. We are developing a photoacoustic system for finger vascular imaging using a ring-shaped array ultrasound transducer. By designing the ring-array based on simulations and phantom experiments, we have created a system that can image multiple objects of different diameters and has the potential to image small objects 0.1-0.5mm in diameter at accurate positions by providing PA and ultrasound echo images simultaneously. In addition, we determined that full width at half maximum (FWHM) of the slice direction corresponded to that of the simulation. In the future, this system may visualize the 3-D vascularization of RA patients’ fingers.

Paper Details

Date Published: 19 February 2018
PDF: 8 pages
Proc. SPIE 10494, Photons Plus Ultrasound: Imaging and Sensing 2018, 1049448 (19 February 2018); doi: 10.1117/12.2288655
Show Author Affiliations
Misaki Nishiyama, Kyoto Univ. (Japan)
Takeshi Namita, Kyoto Univ. (Japan)
Kengo Kondo, Kyoto Univ. (Japan)
Makoto Yamakawa, Kyoto Univ. (Japan)
Tsuyoshi Shiina, Kyoto Univ. (Japan)

Published in SPIE Proceedings Vol. 10494:
Photons Plus Ultrasound: Imaging and Sensing 2018
Alexander A. Oraevsky; Lihong V. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top