Share Email Print

Proceedings Paper

Additive manufacturing of microfluidic glass chips
Author(s): F. Kotz; D. Helmer; B. E. Rapp
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Additive manufacturing has gained great interest in the microfluidic community due to the numerous channel designs which can be tested in the early phases of a lab-on-a-chip device development. High resolution additive manufacturing like microstereolithography is largely associated with polymers. Polymers are at a disadvantage compared to other materials due to their softness and low chemical resistance. Whenever high chemical and thermal resistance combined with high optical transparency is needed, glasses become the material of choice. However, glasses are difficult to structure at the microscale requiring hazardous chemicals for etching processes. In this work we present additive manufacturing and high resolution patterning of microfluidic chips in transparent fused silica glass using stereolithography and microlithography. We print an amorphous silica nanocomposite at room temperature using benchtop stereolithography printers and a custom built microlithography system based on a digital mirror device. Using microlithography we printed structures with tens of micron resolution. The printed part is then converted to a transparent fused silica glass using thermal debinding and sintering. Printing of a microfluidic chip can be done within 30 minutes. The heat treatment can be done within two days.

Paper Details

Date Published: 19 February 2018
PDF: 6 pages
Proc. SPIE 10491, Microfluidics, BioMEMS, and Medical Microsystems XVI, 104910A (19 February 2018); doi: 10.1117/12.2287654
Show Author Affiliations
F. Kotz, Karlsruher Institut für Technologie (Germany)
D. Helmer, Karlsruher Institut für Technologie (Germany)
B. E. Rapp, Karlsruher Institut für Technologie (Germany)

Published in SPIE Proceedings Vol. 10491:
Microfluidics, BioMEMS, and Medical Microsystems XVI
Bonnie L. Gray; Holger Becker, Editor(s)

© SPIE. Terms of Use
Back to Top