Share Email Print
cover

Proceedings Paper

Microfabrication of curved sidewall grooves using scanning nanosecond excimer laser ablation
Author(s): Jing Gong; Georgios Violakis; Daniel Infante; Patrik Hoffmann; André Kostro; Andreas Schüler
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Novel glazing with embedded micro-mirrors can significantly reduce the energy consumption due to cooling and lighting in buildings. Especially promising are large arrays of periodic micro compound-parabolic-concentrators (CPCs) with angular-selected transmittance. For the production of micro CPCs, curved sidewall grooves with a controlled optical surface and an aspect ratio of about 2.3 are fabricated on polycarbonate substrates by scanning nanosecond 248-nm excimer laser ablation. The likewise obtained microstructures can be used as master mold for replication. The cross-sections of the micro grooves are characterized by confocal microscopy, and the extracted morphologies are used for the ray-tracing simulation of the optical devices. Prior to the scanning ablation using a suitable mask in the optical path, the depth profiles under static ablation are investigated to identify ablation rate, imaging resolution and produced surface. Interestingly for the width of the mask opening being less than 6 μm, the ablation rate is increased due to optical interference and /or less shielding by debris. Concerning the scanning ablation, the depth of the curved sidewall grooves ranges from 48 μm to 114 μm, corresponding to the width of the groove opening being in the range from 20 μm to 50 μm. The observed final shapes in cross-sections are in good agreement with the design of the mask. For both theoretical and fabricated groove shapes, the angular-selected transmittance profiles predicted from ray-tracing simulations are highly similar. Scanning nanosecond excimer laser ablation is therefore a promising approach for the realization of high-quality micro CPCs.

Paper Details

Date Published: 19 February 2018
PDF: 8 pages
Proc. SPIE 10520, Laser-based Micro- and Nanoprocessing XII, 105200Z (19 February 2018); doi: 10.1117/12.2286908
Show Author Affiliations
Jing Gong, Ecole Polytechnique Fédérale de Lausanne (Switzerland)
Georgios Violakis, EMPA (Switzerland)
Daniel Infante, EMPA (Switzerland)
Patrik Hoffmann, EMPA (Switzerland)
André Kostro, BASF Switzerland (Switzerland)
Andreas Schüler, Ecole Polytechnique Fédérale de Lausanne (Switzerland)


Published in SPIE Proceedings Vol. 10520:
Laser-based Micro- and Nanoprocessing XII
Udo Klotzbach; Kunihiko Washio; Rainer Kling, Editor(s)

© SPIE. Terms of Use
Back to Top