Share Email Print
cover

Proceedings Paper • new

Solution algorithm of dwell time in slope-based figuring model
Author(s): Yong Li; Lin Zhou
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Surface slope profile is commonly used to evaluate X-ray reflective optics, which is used in synchrotron radiation beam. Moreover, the measurement result of measuring instrument for X-ray reflective optics is usually the surface slope profile rather than the surface height profile. To avoid the conversion error, the slope-based figuring model is introduced introduced by processing the X-ray reflective optics based on surface height-based model. However, the pulse iteration method, which can quickly obtain the dell time solution of the traditional height-based figuring model, is not applied to the slope-based figuring model because property of the slope removal function have both positive and negative values and complex asymmetric structure. To overcome this problem, we established the optimal mathematical model for the dwell time solution, By introducing the upper and lower limits of the dwell time and the time gradient constraint. Then we used the constrained least squares algorithm to solve the dwell time in slope-based figuring model. To validate the proposed algorithm, simulations and experiments are conducted. A flat mirror with effective aperture of 80 mm is polished on the ion beam machine. After iterative polishing three times, the surface slope profile error of the workpiece is converged from RMS 5.65 μrad to RMS 1.12 μrad.

Paper Details

Date Published: 24 October 2017
PDF: 8 pages
Proc. SPIE 10460, AOPC 2017: Optoelectronics and Micro/Nano-optics, 104601X (24 October 2017); doi: 10.1117/12.2285877
Show Author Affiliations
Yong Li, National Univ. of Defense Technology (China)
Hunan Key Lab. of Ultra-Precision Machining Technology (China)
Lin Zhou, National Univ. of Defense Technology (China)
Hunan Key Lab. of Ultra-Precision Machining Technology (China)


Published in SPIE Proceedings Vol. 10460:
AOPC 2017: Optoelectronics and Micro/Nano-optics
Min Qiu; Min Gu; Xiaocong Yuan; Zhiping Zhou, Editor(s)

© SPIE. Terms of Use
Back to Top