Share Email Print
cover

Proceedings Paper

A sea-land segmentation algorithm based on multi-feature fusion for a large-field remote sensing image
Author(s): Jing Li; Weixin Xie; Jihong Pei
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Sea-land segmentation is one of the key technologies of sea target detection in remote sensing images. At present, the existing algorithms have the problems of low accuracy, low universality and poor automatic performance. This paper puts forward a sea-land segmentation algorithm based on multi-feature fusion for a large-field remote sensing image removing island. Firstly, the coastline data is extracted and all of land area is labeled by using the geographic information in large-field remote sensing image. Secondly, three features (local entropy, local texture and local gradient mean) is extracted in the sea-land border area, and the three features combine a 3D feature vector. And then the MultiGaussian model is adopted to describe 3D feature vectors of sea background in the edge of the coastline. Based on this multi-gaussian sea background model, the sea pixels and land pixels near coastline are classified more precise. Finally, the coarse segmentation result and the fine segmentation result are fused to obtain the accurate sea-land segmentation. Comparing and analyzing the experimental results by subjective vision, it shows that the proposed method has high segmentation accuracy, wide applicability and strong anti-disturbance ability.

Paper Details

Date Published: 8 March 2018
PDF: 8 pages
Proc. SPIE 10611, MIPPR 2017: Remote Sensing Image Processing, Geographic Information Systems, and Other Applications, 106110I (8 March 2018); doi: 10.1117/12.2285779
Show Author Affiliations
Jing Li, Shenzhen Univ. (China)
Weixin Xie, Shenzhen Univ. (China)
Jihong Pei, Shenzhen Univ. (China)


Published in SPIE Proceedings Vol. 10611:
MIPPR 2017: Remote Sensing Image Processing, Geographic Information Systems, and Other Applications
Nong Sang; Jie Ma; Zhong Chen, Editor(s)

© SPIE. Terms of Use
Back to Top