Share Email Print
cover

Proceedings Paper

High dynamic infrared image compressive enhancement based on fast local Laplacian filters
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

High dynamic range infrared image detail enhancement is an important processing procedure in the field of infrared (IR) imaging. Because of the dynamic range of natural scene image far beyond the human vision system, display equipment, and the high dynamic image transformed directly from high dynamic to low dynamic will cause detail information lost, it is essential to compress dynamic range of image and enhance detail. Aiming at the disadvantages of existing methods, high dynamic infrared image compressive enhancement based on fast local Laplacian filters were proposed. First, the fast local Laplacian filters are utilized to separate the image into a base layer and detail layer. Second, the dynamic range of base layer was compressed by using gamma correction in order to improve contrast. The detail layer is stretched by utilizing sigmoid function. Finally, the enhanced output image is obtained by recombining the detail layer and base layer. Compared with other methods such as histogram equalization, bilateral filtering, the experimental results demonstrated that the proposed method have a better performance in term of enhancing details and improving contrast by using evaluation index of image detail enhancement.

Paper Details

Date Published: 24 October 2017
PDF: 5 pages
Proc. SPIE 10462, AOPC 2017: Optical Sensing and Imaging Technology and Applications, 1046251 (24 October 2017); doi: 10.1117/12.2285698
Show Author Affiliations
Chunmei Wang, Xidian Univ. (China)
Hanlin Qin, Xidian Univ. (China)
Wanting Wang, Xidian Univ. (China)
Wenxiong Cheng, Xidian Univ. (China)
Huixin Zhou, Xidian Univ. (China)


Published in SPIE Proceedings Vol. 10462:
AOPC 2017: Optical Sensing and Imaging Technology and Applications
Yadong Jiang; Haimei Gong; Weibiao Chen; Jin Li, Editor(s)

© SPIE. Terms of Use
Back to Top