Share Email Print
cover

Proceedings Paper • new

Metalens with mono-layered-film phase compensation mechanism realizing subwavelength focusing
Author(s): Qian Sun; Shuming Wang; Ningjuan Ruan
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In optical systems, the lens is the most important element, which has been widely used. Conventional lens takes advantage of its convex interface to change the phase along the light path, in order to focus light to a point in the focal plane. However, their spatial resolution is limited to approximately half of the working wavelength restricting the fine observation of tiny objects particular biological samples. Recently superlenses with high resolution focusing property beyond diffraction limit have been proposed without phase compensation resulting in the lack of ability of focus plane wave. We proposed metalens at mid-infrared region made of metamaterials slab and a phase compensation based on mono-layered concave film realizing subwavelength focusing ability (λ/3). The metamaterials slab consists of 200-layered metal -dielectric structure (doped GaN-Si) possessing hyperbolic regime. The curve shape and electromagnetic property of phase compensation mono-layered concave film is obtained through restrict theoretical computation which related to the parameters of the metamaterials slab. The proposed metalens can also be easily extended to three dimension for realistic application as conventional optical lens.

Paper Details

Date Published: 24 October 2017
PDF: 6 pages
Proc. SPIE 10460, AOPC 2017: Optoelectronics and Micro/Nano-Optics, 104601L (24 October 2017); doi: 10.1117/12.2285294
Show Author Affiliations
Qian Sun, Beijing Institute of Space Mechanics and Electricity (China)
Shuming Wang, Nanjing Univ. (China)
Ningjuan Ruan, Beijing Institute of Space Mechanics and Electricity (China)


Published in SPIE Proceedings Vol. 10460:
AOPC 2017: Optoelectronics and Micro/Nano-Optics
Min Qiu; Min Gu; Xiaocong Yuan; Zhiping Zhou, Editor(s)

© SPIE. Terms of Use
Back to Top