Share Email Print
cover

Proceedings Paper

Super-resolution imaging by dual patterned nonlinear illumination
Author(s): Jiang Zhang; Qingru Li; Han Zhang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Structured illumination microscopy (SIM) breaks the resolution limit caused by optical diffraction, and nonlinear SIM can further improve the resolution with nonlinear effect. However, current nonlinear SIM methods such as Saturated SIM and Photo-switching SIM are unsatisfactory in biomedical imaging. The stimulated emission depletion (STED) effect is considered as a great nonlinear effect with fast switching response, negligible stochastic noise during switching, low shot noise and theoretical unlimited resolution. We propose an original nonlinear structured illumination microscopy based on both patterned excitation illumination and structured STED field (SSTED-SIM). Theoretical study and simulation results demonstrated that SSTED-SIM is capable of providing the ability of fast imaging speed, and low imaging noise at the same time compared with other nonlinear SIM techniques.

Paper Details

Date Published: 24 October 2017
PDF: 5 pages
Proc. SPIE 10462, AOPC 2017: Optical Sensing and Imaging Technology and Applications, 104623C (24 October 2017); doi: 10.1117/12.2285138
Show Author Affiliations
Jiang Zhang, Sichuan Univ. (China)
Qingru Li, Sichuan Univ. (China)
Han Zhang, Sichuan Univ. (China)


Published in SPIE Proceedings Vol. 10462:
AOPC 2017: Optical Sensing and Imaging Technology and Applications
Yadong Jiang; Haimei Gong; Weibiao Chen; Jin Li, Editor(s)

© SPIE. Terms of Use
Back to Top