Share Email Print
cover

Proceedings Paper

An optimization method for improving the accuracy of centroid computation based on Shack-Hartmann wavefront sensor
Author(s): Xiaoyu Zhang; Caixia Wang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The Shack-Hartmann wavefront sensor is widely used because of high light energy utilization and the simultaneous measurement of the optical wavefront phase distribution and intensity distribution. The accuracy of the centroid computation has a great influence on the detection accuracy of the Shack-Hartmann wavefront sensor. In this paper, a new method is proposed to improve the accuracy of centroid computation. This method include three steps. First of all, we use a new sliding template method to locate the spot automatically and obtain the approximate center of the spot. Next, we take an adaptive threshold method. After the processing of subtracting the threshold , we use the center of gravity(CoG) method to calculate the spot centroid. A series of simulations are conducted to verify the effectiveness and accuracy of this new method. Compared with the widely-used optimum threshold algorithm and the CoG method, the new algorithm not only enhances the accuracy of centroid computation but also has strong stability.

Paper Details

Date Published: 24 October 2017
PDF: 8 pages
Proc. SPIE 10462, AOPC 2017: Optical Sensing and Imaging Technology and Applications, 1046234 (24 October 2017); doi: 10.1117/12.2285026
Show Author Affiliations
Xiaoyu Zhang, Institute of Optics and Electronics (China)
Univ. of Chinese Academy of Sciences (China)
Caixia Wang, Institute of Optics and Electronics (China)


Published in SPIE Proceedings Vol. 10462:
AOPC 2017: Optical Sensing and Imaging Technology and Applications
Yadong Jiang; Haimei Gong; Weibiao Chen; Jin Li, Editor(s)

© SPIE. Terms of Use
Back to Top