Share Email Print
cover

Proceedings Paper

Off-resonance laser frequency stabilization method by Faraday rotation spectroscopy using acoustic-optic modulator
Author(s): Zishan Fang; Wei Quan; Yueyang Zhai
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We propose a far off-resonance laser frequency stabilization method that can accurately adjust the frequency lock points based on the Faraday rotation spectroscopy. The atomic magnetometer based on the spin-exchange relaxation-free (SERF) theory needs to stabilize the frequency of the probe laser on the detuning of several gigahertz (GHz) away from the resonance of the alkali metal atom, to reduce the absorption of the probe light by the alkali metal vapor cell. We propose a laser frequency stabilization method that can accurately adjust the frequency lock points using an acousto-optic modulator based on Faraday rotation spectroscopy. We reveal the principles of the method and simulate the new Faraday rotation spectra. Besides, we study the effect of the amount of frequency shift of the acousto - optic modulator and the temperature of the alkali metal vapor cell on the frequency lock points of the spectra, and give the formula for calculating the frequency point. Our proposed laser frequency stabilization method can stabilize the laser frequency on the detuning of several gigahertz (GHz) away from the resonance of the alkali metal atom and can adjust the frequency lock points quickly and accurately. This method can be used in atomic magnetometer, degenerate Raman sideband cooling (DRSC) and two photon excitation of Rydberg states.

Paper Details

Date Published: 24 October 2017
PDF: 7 pages
Proc. SPIE 10464, AOPC 2017: Fiber Optic Sensing and Optical Communications, 104640Y (24 October 2017); doi: 10.1117/12.2284966
Show Author Affiliations
Zishan Fang, Beihang Univ. (China)
Wei Quan, Beihang Univ. (China)
Yueyang Zhai, Beihang Univ. (China)


Published in SPIE Proceedings Vol. 10464:
AOPC 2017: Fiber Optic Sensing and Optical Communications
Zi-Sen Zhao; Leping Wei; Yanbiao Liao; Weixu Zhang; Desheng Jiang; Wei Wang; Kenneth T. V. Grattan, Editor(s)

© SPIE. Terms of Use
Back to Top