Share Email Print
cover

Proceedings Paper

Improved power and efficiency for tapered lasers with optimized photonic crystal structures
Author(s): Xiaolong Ma; Hongwei Qu; Shaoyu Zhao; Xuyan Zhou; Yuzhe Lin; Wanhua Zheng
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

High power and high beam quality laser sources are required in numerous applications such as nonlinear frequency conversion, optical pumping of solid-state and fiber lasers, material processing and others. Tapered lasers can provide a high output power while keeping a high beam quality. However, the conventional tapered lasers suffer from a large vertical beam divergence. We have demonstrated 2-mm long tapered lasers with photonic crystal structures. A high beam quality and a narrow vertical divergence are achieved.

In this paper, we optimized the photonic crystal structure and fabricated a 4-mm long tapered laser to further increase the output power and the wall-plug efficiency. Compared with our precious wafer, the optimized structure has a lower doping level to reduce the internal loss. The period of the photonic crystal structure and the thickness of the upper cladding are also reduced. The device has a 1-mm long ridge-waveguide section and a 3-mm long tapered section. The taper angle is 4°. An output power of 7.3 W is achieved with a peak wall-plug efficiency of 46% in continuous-wave mode. The threshold current is around 500 mA and the slope efficiency is 0.93 W/A. In pulsed mode, the output power is 15.6 W and the maximum wall-plug efficiency is 48.1%. The far-field divergence with full width at half maximum is 6.3° for the lateral direction at 3 A. The vertical far-field beam divergence is around 11° at different injection levels. High beam qualities are demonstrated by beam quality factor M2 of 1.52 for the lateral direction and 1.54 for the vertical direction.

Paper Details

Date Published: 24 October 2017
PDF: 7 pages
Proc. SPIE 10457, AOPC 2017: Laser Components, Systems, and Applications, 104571O (24 October 2017); doi: 10.1117/12.2284461
Show Author Affiliations
Xiaolong Ma, Institute of Semiconductors (China)
Univ. of Chinese Academy of Sciences (China)
Hongwei Qu, Institute of Semiconductors (China)
Shaoyu Zhao, Institute of Semiconductors (China)
Univ. of Chinese Academy of Sciences (China)
Xuyan Zhou, Institute of Semiconductors (China)
Univ. of Chinese Academy of Sciences (China)
Yuzhe Lin, Institute of Semiconductors (China)
Univ. of Chinese Academy of Sciences (China)
Wanhua Zheng, Institute of Semiconductors (China)
Univ. of Chinese Academy of Sciences (China)


Published in SPIE Proceedings Vol. 10457:
AOPC 2017: Laser Components, Systems, and Applications
Shibin Jiang; Lijun Wang; Lan Jiang; Long Zhang, Editor(s)

© SPIE. Terms of Use
Back to Top